Do you want to publish a course? Click here

Chandra imaging of the $sim$kpc extended outflow in 1H 0419-577

110   0   0.0 ( 0 )
 Added by Laura Di Gesu
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Seyfert 1 galaxy 1H 0419-577 hosts a $sim$kpc extended outflow that is evident in the [ion{O}{iii}] image and that is also detected as a warm absorber in the UV/X-ray spectrum. Here, we analyze a $sim$30 ks Chandra-ACIS X-ray image, with the aim of resolving the diffuse extranuclear X-ray emission and of investigating its relationship with the galactic outflow. Thanks to its sub-arcsecond spatial resolution, Chandra resolves the circumnuclear X-ray emission, which extends up to a projected distance of at least $sim$16 kpc from the center. The morphology of the diffuse X-ray emission is spherically symmetrical. We could not recover a morphological resemblance between the soft X-ray emission and the ionization bicone that is traced by the [ion{O}{iii}] outflow. we argue that the photoionized gas nebula must be distributed mostly along the polar directions, outside our line of sight. In this geometry, the X-ray/UV warm absorber must trace a different gas component, physically disconnected from the emitting gas, and located closer to the equatorial plane.



rate research

Read More

111 - Main Pal 2017
We present detailed broadband UV/optical to X-ray spectral variability of the Seyfert 1 galaxy 1H 0419-577 using six XMM-Newton observations performed during 2002-2003. These observations covered a large amplitude variability event in which the soft X-ray (0.3-2 keV) count rate increased by a factor of ~4 in six months. The X-ray spectra during the variability are well described by a model consisting of a primary power law, blurred and distant reflection. The 2-10 keV power-law flux varied by a factor ~7 while the 0.3-2 keV soft X-ray excess flux derived from the blurred reflection component varied only by a factor of ~2. The variability event was also observed in the optical and UV bands but the variability amplitudes were only at the 6-10% level. The variations in the optical and UV bands appear to follow the variations in the X-ray band. During the rising phase, the optical bands appear to lag behind the UV band but during the declining phase, the optical bands appear to lead the UV band. Such behavior is not expected in the reprocessing models where the optical/UV emission is the result of reprocessing of X-ray emission in the accretion disc. The delayed contribution of the broad emission lines in the UV band or the changes in the accretion disc/corona geometry combined with X-ray reprocessing may give rise to the observed behavior of the variations.
135 - K.A. Pounds 2004
Previous observations of the luminous Seyfert 1 galaxy 1H 0419-577 have found its X-ray spectrum to range from that of a typical Seyfert 1 with 2-10 keV power law index Gamma ~ 1.9 to a much flatter power law of Gamma ~ 1.5 or less. We report here a new XMM-Newton observation which allows the low state spectrum to be studied in much greater detail than hitherto. We find a very hard spectrum (Gamma ~ 1.0), which exhibits broad features that can be modelled with the addition of an extreme relativistic Fe K emission line or with partial covering of the underlying continuum by a substantial column density of near-neutral gas. Both the EPIC and RGS data show evidence for strong line emission of OVII and OVIII requiring an extended region of low density photoionised gas in 1H 0419-577. Comparison with an earlier XMM-Newton observation when 1H 0419-577 was X-ray bright indicates the dominant spectral variability occurs via a steep power law component.
106 - K.A. Pounds 2004
An XMM-Newton observation of the luminous Seyfert 1 galaxy 1H 0419-577 in September 2002, when the source was in an extreme low-flux state, found a very hard X-ray spectrum at 1-10 keV with a strong soft excess below ~1 keV. Comparison with an earlier XMM-Newton observation when 1H 0419-577 was `X-ray bright indicated the dominant spectral variability was due to a steep power law or cool Comptonised thermal emission. Four further XMM-Newton observations, with 1H 0419-577 in intermediate flux states, now support that conclusion, while we also find the variable emission component in intermediate state difference spectra to be strongly modified by absorption in low ionisation matter. The variable `soft excess then appears to be an artefact of absorption of the underlying continuum while the `core soft emission can be attributed to recombination in an extended region of more highly ionised gas. We note the wider implications of finding substantial cold dense matter overlying (or embedded in) the X-ray continuum source in a luminous Seyfert 1 galaxy.
We review the multiwavelength properties of the few known gamma-ray binaries, focusing on extended emission recently resolved with Chandra. We discuss the implications of these findings for the nature of compact objects and for physical processes operating in these systems.
207 - K. Nandra , E.S. Laird , J.A. Aird 2015
We present the results of deep chandra imaging of the central region of the Extended Groth Strip, the AEGIS-X Deep (AEGIS-XD) survey. When combined with previous chandra observations of a wider area of the strip, AEGIS-X Wide (AEGIS-XW; Laird et~al. 2009), these provide data to a nominal exposure depth of 800ks in the three central ACIS-I fields, a region of approximately $0.29$~deg$^{2}$. This is currently the third deepest X-ray survey in existence, a factor $sim 2-3$ shallower than the Chandra Deep Fields (CDFs) but over an area $sim 3$ times greater than each CDF. We present a catalogue of 937 point sources detected in the deep chandra observations. We present identifications of our X-ray sources from deep ground-based, Spitzer, GALEX and HST imaging. Using a likelihood ratio analysis, we associate multi band counterparts for 929/937 of our X-ray sources, with an estimated 95~% reliability, making the identification completeness approximately 94~% in a statistical sense. Reliable spectroscopic redshifts for 353 of our X-ray sources are provided predominantly from Keck (DEEP2/3) and MMT Hectospec, so the current spectroscopic completeness is $sim 38$~per cent. For the remainder of the X-ray sources, we compute photometric redshifts based on multi-band photometry in up to 35 bands from the UV to mid-IR. Particular attention is given to the fact that the vast majority the X-ray sources are AGN and require hybrid templates. Our photometric redshifts have mean accuracy of $sigma=0.04$ and an outlier fraction of approximately 5%, reaching $sigma=0.03$ with less than 4% outliers in the area covered by CANDELS . The X-ray, multi-wavelength photometry and redshift catalogues are made publicly available.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا