Do you want to publish a course? Click here

Extreme ultra-soft X-ray variability in an eROSITA observation of the Narrow-Line Seyfert 1 Galaxy 1H 0707-495

152   0   0.0 ( 0 )
 Added by Thomas Boller
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The ultra-soft narrow-line Seyfert 1 galaxy 1H 0707-495 is a well-known and highly variable active galactic nucleus (AGN), with a complex, steep X-ray spectrum, and has been studied extensively with XMM-Newton. 1H 0707-495 was observed with the extended ROentgen Survey with an Imaging Telescope Array (eROSITA) aboard the Spectrum-Roentgen-Gamma (SRG) mission on October 11, 2019, for about 60,000 seconds as one of the first calibration and pointed verification phase (CalPV) observations. The eROSITA light curves show significant variability in the form of a flux decrease by a factor of 58 with a 1 sigma error confidence interval between 31 and 235. This variability is primarily in the soft band, and is much less extreme in the hard band. No strong ultraviolet variability has been detected in simultaneous XMM-Newton Optical Monitor observations. The UV emission is about 10^44 erg s^-1, close to the Eddington limit. 1H 0707-495 entered the lowest hard flux state seen in 20 years of XMM-Newton observations. In the eROSITA All-Sky Survey (eRASS) observations taken in April 2020, the X-ray light curve is still more variable in the ultra-soft band, but with increased soft and hard band count rates more similar to previously observed flux states. A model including relativistic reflection and a variable partial covering absorber is able to fit the spectra and provides a possible explanation for the extreme light-curve behaviour. The absorber is probably ionised and therefore more transparent to soft X-rays. This leaks soft X-rays in varying amounts, leading to large-amplitude soft-X-ray variability.



rate research

Read More

We examine archival XMM-Newton data on the extremely variable narrow-line Seyfert 1 (NLS1) active galactic nucleus (AGN) 1H 0707-495. We construct fractional excess variance (Fvar) spectra for each epoch, including the recent 2019 observation taken simultaneously with eROSITA. We explore both intrinsic and environmental absorption origins for the variability in different epochs, and examine the effect of the photoionised emission lines from outflowing gas. In particular, we show that the unusual soft variability first detected by eROSITA in 2019 is due to a combination of an obscuration event and strong suppression of the variance at 1 keV by photoionised emission, which makes the variance below 1 keV appear more extreme. We also examine the variability on long timescales, between observations, and find that it is well described by a combination of intrinsic variability and absorption variability. We suggest that the typical extreme high frequency variability which 1H 0707-495 is known for is intrinsic to the source, but the large amplitude, low frequency variability that causes prolonged low-flux intervals is likely dominated by variable low-ionisation, low velocity absorption.
We present the results of our study of the long term X-ray variability characteristics of the Narrow Line Seyfert 1 galaxy RE J1034+396. We use data obtained from the AstroSat satellite along with the light curves obtained from XMM-Newton and Swift-XRT. We use the 0.3 - 7.0 keV and 3 - 20 keV data, respectively, from the SXT and the LAXPC of AstroSat. The X-ray spectra in the 0.3 - 20 keV region are well fit with a model consisting of a power-law and a soft excess described by a thermal-Compton emission with a large optical depth, consistent with the earlier reported results. We have examined the X-ray light curves in the soft and hard X-ray bands of SXT and LAXPC, respectively, and find that the variability is slightly larger in the hard band. To investigate the variability characteristics of this source at different time scales, we have used X-ray light curves obtained from XMM-Newton data (200 s to 100 ks range) and Swift-XRT data (1 day to 100 day range) and find that there are evidences to suggest that the variability sharply increases at longer time scales. We argue that the mass of the black hole in RE J1034+396 is likely to be $sim$3 $times$ 10$^6$ M$_odot$, based on the similarity of the observed QPO to the high frequency QPO seen in the Galactic black hole binary, GRS 1915+105.
We present for the first time the timing and spectral analyses for a narrow-line Seyfert 1 galaxy, SBS 1353+564, using it{XMM-Newton} and it{Swift} multi-band observations from 2007 to 2019. Our main results are as follows: 1) The temporal variability of SBS 1353+564 is random, while the hardness ratio is relatively constant over a time span of 13 years; 2) We find a prominent soft X-ray excess feature below 2 keV, which cannot be well described by a simple blackbody component; 3) After comparing the two most prevailing models for interpreting the origin of the soft X-ray excess, we find that the relativistically smeared reflection model is unable to fit the data above 5 keV well and the X-ray spectra do not show any reflection features, such as the Fe Kalpha emission line. However, the warm corona model can obtain a good fitting result. For the warm corona model, we try to use three different sets of spin values to fit the data and derive different best-fitting parameter sets; 4) We compare the UV/optical spectral data with the extrapolated values of the warm corona model to determine which spin value is more appropriate for this source, and we find that the warm corona model with non-spin can sufficiently account for the soft X-ray excess in SBS 1353+564.
64 - Th. Boller 2001
We report the first detection of a sharp spectral feature in a Narrow-Line Seyfert 1 galaxy. Using XMM-Newton we have observed 1H0707-495 and find a drop in flux by a factor of more than 2 at a rest-frame energy of ~7 keV without any detectable narrow Fe K alpha line emission. The energy of this feature suggests a connection with the neutral iron K photoelectric edge, but the lack of any obvious absorption in the spectrum at lower energies makes the interpretation challenging. We explore two alternative explanations for this unusual spectral feature: (i) partial covering absorption by clouds of neutral material and (ii) ionised disc reflection with lines and edges from different ionisation stages of iron blurred together by relativistic effects. We note that both models require an iron overabundance to explain the depth of the feature. The X-ray light curve shows strong and rapid variability, changing by a factor of four during the observation. The source displays modest spectral variability which is uncorrelated with flux.
We analyse eight XMM-Newton observations of the bright Narrow-Line Seyfert 1 galaxy Arakelian 564 (Ark 564). These observations, separated by ~6 days, allow us to look for correlations between the simultaneous UV emission (from the Optical Monitor) with not only the X-ray flux but also with the different X-ray spectral parameters. The X-ray spectra from all the observations are found to be adequately fitted by a double Comptonization model where the soft excess and the hard X-ray power law are represented by thermal Comptonization in a low temperature plasma and hot corona, respectively. Apart from the fluxes of each component, the hard X-ray power law index is found to be variable. These results suggest that the variability is associated with changes in the geometry of the inner region. The UV emission is found to be variable and well correlated with the high energy index while the correlations with the fluxes of each component are found to be weaker. Using viscous time-scale arguments we rule out the possibility that the UV variation is due to fluctuating accretion rate in the outer disc. If the UV variation is driven by X-ray reprocessing, then our results indicate that the strength of the X-ray reprocessing depends more on the geometry of the X-ray producing inner region rather than on the X-ray luminosity alone.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا