Do you want to publish a course? Click here

Generalized Rayleigh and Jacobi processes and exceptional orthogonal polynomials

139   0   0.0 ( 0 )
 Added by Choon-Lin Ho
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present four types of infinitely many exactly solvable Fokker-Planck equations, which are related to the newly discovered exceptional orthogonal polynomials. They represent the deform



rate research

Read More

132 - K. S. Nisar 2017
The aim of this paper is to apply generalized operators of fractional integration and differentiation involving Appells function $F_{3}(:)$ due to Marichev-Saigo-Maeda (MSM), to the Jacobi type orthogonal polynomials. The results are expressed in terms of generalized hypergeometric function. Some of the interesting special cases of the main results also established.
A survey of recents advances in the theory of Heun operators is offered. Some of the topics covered include: quadratic algebras and orthogonal polynomials, differential and difference Heun operators associated to Jacobi and Hahn polynomials, connections with time and band limiting problems in signal processing.
We consider a set of measures on the real line and the corresponding system of multiple orthogonal polynomials (MOPs) of the first and second type. Under some very mild assumptions, which are satisfied by Angelesco systems, we define self-adjoint Jacobi matrices on certain rooted trees. We express their Greens functions and the matrix elements in terms of MOPs. This provides a generalization of the well-known connection between the theory of polynomials orthogonal on the real line and Jacobi matrices on $mathbb{Z}_+$ to higher dimension. We illustrate importance of this connection by proving ratio asymptotics for MOPs using methods of operator theory.
76 - C.-L. Ho 2020
It is pointed out that, for the fractional Fokker-Planck equation for subdiffusion proposed by Metzler, Barkai, and Klafter [Phys. Rev. Lett. 82 (1999) 3563], there are four types of infinitely many exact solutions associated with the newly discovered exceptional orthogonal polynomials. They represent fractionally deform
Mechanical systems (i.e., one-dimensional field theories) with constraints are the focus of this paper. In the classical theory, systems with infinite-dimensional targets are considered as well (this then encompasses also higher-dimensional field theories in the hamiltonian formalism). The properties of the Hamilton-Jacobi (HJ) action are described in details and several examples are explicitly computed (including nonabelian Chern-Simons theory, where the HJ action turns out to be the gauged Wess-Zumino-Witten action). Perturbative quantization, limited in this note to finite-dimensional targets, is performed in the framework of the Batalin-Vilkovisky (BV) formalism in the bulk and of the Batalin-Fradkin-Vilkovisky (BFV) formalism at the endpoints. As a sanity check of the method, it is proved that the semiclassical contribution of the physical part of the evolution operator is still given by the HJ action. Several examples are computed explicitly. In particular, it is shown that the toy model for nonabelian Chern-Simons theory and the toy model for 7D Chern-Simons theory with nonlinear Hitchin polarization do not have quantum corrections in the physical part (the extension of these results to the actual cases is discussed in the companion paper [arXiv:2012.13983]). Background material for both the classical part (symplectic geometry, generalized generating functions, HJ actions, and the extension of these concepts to infinite-dimensional manifolds) and the quantum part (BV-BFV formalism) is provided.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا