Do you want to publish a course? Click here

Enhancement of the quadrupole interaction of an atom with guided light of an ultrathin optical fiber

69   0   0.0 ( 0 )
 Added by Fam Le Kien
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the electric quadrupole interaction of an alkali-metal atom with guided light in the fundamental and higher-order modes of a vacuum-clad ultrathin optical fiber. We calculate the quadrupole Rabi frequency, the quadrupole oscillator strength, and their enhancement factors. In the example of a rubidium-87 atom, we study the dependencies of the quadrupole Rabi frequency on the quantum numbers of the transition, the mode type, the phase circulation direction, the propagation direction, the orientation of the quantization axis, the position of the atom, and the fiber radius. We find that the root-mean-square (rms) quadrupole Rabi frequency reduces quickly but the quadrupole oscillator strength varies slowly with increasing radial distance. We show that the enhancement factors of the rms Rabi frequency and the oscillator strength do not depend on any characteristics of the internal atomic states except for the atomic transition frequency. The enhancement factor of the oscillator strength can be significant even when the atom is far away from the fiber. We show that, in the case where the atom is positioned on the fiber surface, the oscillator strength for the quasicircularly polarized fundamental mode HE$_{11}$ has a local minimum at the fiber radius $asimeq 107$ nm, and is larger than that for quasicircularly polarized higher-order hybrid modes, TE modes, and TM modes in the region $a<498.2$ nm.



rate research

Read More

Light storage in an optical fiber is an attractive component in quantum optical delay line technologies. Although silica-core optical fibers are excellent in transmitting broadband optical signals, it is challenging to tailor their dispersive property to slow down a light pulse or store it in the silica-core for a long delay time. Coupling a dispersive and coherent medium with an optical fiber is promising in supporting long optical delay. Here, we load cold Rb atomic vapor into an optical trap inside a hollow-core photonic crystal fiber, and store the phase of the light in a long-lived spin-wave formed by atoms and retrieve it after a fully controllable delay time using electromagnetically-induced-transparency (EIT). We achieve over 50 ms of storage time and the result is equivalent to 8.7x10^-5 dB s^-1 of propagation loss in an optical fiber. Our demonstration could be used for buffering and regulating classical and quantum information flow between remote networks.
We study the force of light on a two-level atom near an ultrathin optical fiber using the mode function method and the Green tensor technique. We show that the total force consists of the driving-field force, the spontaneous-emission recoil force, and the fiber-induced van der Waals potential force. Due to the existence of a nonzero axial component of the field in a guided mode, the Rabi frequency and, hence, the magnitude of the force of the guided driving field may depend on the propagation direction. When the atomic dipole rotates in the meridional plane, the spontaneous-emission recoil force may arise as a result of the asymmetric spontaneous emission with respect to opposite propagation directions. The van der Waals potential for the atom in the ground state is off-resonant and opposite to the off-resonant part of the van der Waals potential for the atom in the excited state. Unlike the potential for the ground state, the potential for the excited state may oscillate depending on the distance from the atom to the fiber surface.
We calculate analytically and numerically the axial orbital and spin torques of guided light on a two-level atom near an optical nanofiber. We show that the generation of these torques is governed by the angular momentum conservation law in the Minkowski formulation. The orbital torque on the atom near the fiber has a contribution from the average recoil of spontaneously emitted photons. Photon angular momentum and atomic spin angular momentum can be converted into atomic orbital angular momentum. The orbital and spin angular momenta of the guided field are not transferred separately to the orbital and spin angular momenta of the atom.
We demonstrate phase sensitivity in a horizontally guided, acceleration-sensitive atom interferometer with a momentum separation of 80hk between its arms. A fringe visibility of 7% is observed. Our coherent pulse sequence accelerates the cold cloud in an optical waveguide, an inherently scalable route to large momentum separation and high sensitivity. We maintain coherence at high momentum separation due to both the transverse confinement provided by the guide, and our use of optical delta-kick cooling on our cold-atom cloud. We also construct a horizontal interferometric gradiometer to measure the longitudinal curvature of our optical waveguide.
123 - C. Sayrin , C. Junge , R. Mitsch 2015
Photons are nonchiral particles: their handedness can be both left and right. However, when light is transversely confined, it can locally exhibit a transverse spin whose orientation is fixed by the propagation direction of the photons. Confined photons thus have chiral character. Here, we employ this to demonstrate nonreciprocal transmission of light at the single-photon level through a silica nanofibre in two experimental schemes. We either use an ensemble of spin-polarised atoms that is weakly coupled to the nanofibre-guided mode or a single spin-polarised atom strongly coupled to the nanofibre via a whispering-gallery-mode resonator. We simultaneously achieve high optical isolation and high forward transmission. Both are controlled by the internal atomic state. The resulting optical diode is the first example of a new class of nonreciprocal nanophotonic devices which exploit the chirality of confined photons and which are, in principle, suitable for quantum information processing and future quantum optical networks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا