Do you want to publish a course? Click here

Long Light Storage Time in an Optical Fiber

70   0   0.0 ( 0 )
 Added by Shau-Yu Lan
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Light storage in an optical fiber is an attractive component in quantum optical delay line technologies. Although silica-core optical fibers are excellent in transmitting broadband optical signals, it is challenging to tailor their dispersive property to slow down a light pulse or store it in the silica-core for a long delay time. Coupling a dispersive and coherent medium with an optical fiber is promising in supporting long optical delay. Here, we load cold Rb atomic vapor into an optical trap inside a hollow-core photonic crystal fiber, and store the phase of the light in a long-lived spin-wave formed by atoms and retrieve it after a fully controllable delay time using electromagnetically-induced-transparency (EIT). We achieve over 50 ms of storage time and the result is equivalent to 8.7x10^-5 dB s^-1 of propagation loss in an optical fiber. Our demonstration could be used for buffering and regulating classical and quantum information flow between remote networks.



rate research

Read More

We investigate the electric quadrupole interaction of an alkali-metal atom with guided light in the fundamental and higher-order modes of a vacuum-clad ultrathin optical fiber. We calculate the quadrupole Rabi frequency, the quadrupole oscillator strength, and their enhancement factors. In the example of a rubidium-87 atom, we study the dependencies of the quadrupole Rabi frequency on the quantum numbers of the transition, the mode type, the phase circulation direction, the propagation direction, the orientation of the quantization axis, the position of the atom, and the fiber radius. We find that the root-mean-square (rms) quadrupole Rabi frequency reduces quickly but the quadrupole oscillator strength varies slowly with increasing radial distance. We show that the enhancement factors of the rms Rabi frequency and the oscillator strength do not depend on any characteristics of the internal atomic states except for the atomic transition frequency. The enhancement factor of the oscillator strength can be significant even when the atom is far away from the fiber. We show that, in the case where the atom is positioned on the fiber surface, the oscillator strength for the quasicircularly polarized fundamental mode HE$_{11}$ has a local minimum at the fiber radius $asimeq 107$ nm, and is larger than that for quasicircularly polarized higher-order hybrid modes, TE modes, and TM modes in the region $a<498.2$ nm.
The large number of spatial modes supported by standard multimode fibers is a promising platform for boosting the channel capacity of quantum and classical communications by orders of magnitude. However, the practical use of long multimode fibers is severely hampered by modal crosstalk and polarization mixing. To overcome these challenges, we develop and experimentally demonstrate a vectorial time reversal technique, which is accomplished by digitally pre-shaping the wavefront and polarization of the forward-propagating signal beam to be the phase conjugate of an auxiliary, backward-propagating probe beam. Here, we report an average modal fidelity above 80% for 210 Laguerre-Gauss and Hermite-Gauss modes by using vectorial time reversal over an unstabilized 1-km-long fiber. We also propose a practical and scalable spatial-mode-multiplexed quantum communication protocol over long multimode fibers to illustrate potential applications that can be enabled by our technique.
Noiseless optical components are critical for applications ranging from metrology to quantum communication. Here we characterize several commercial telecom C-band fiber components for parasitic noise using a tunable laser. We observe the spectral signature of trace concentrations of erbium in all devices from the underlying optical crystals including YVO4, LiNbO3, TeO2 and AMTIR glass. Due to the long erbium lifetime, these signals are challenging to mitigate at the single photon level in the telecom range, and suggests the need for higher purity optical crystals.
We present an experimental and theoretical study of the energy transfer between modes during the tapering process of an optical nanofiber through spectrogram analysis. The results allow optimization of the tapering process, and we measure transmission in excess of 99.95% for the fundamental mode. We quantify the adiabaticity condition through calculations and place an upper bound on the amount of energy transferred to other modes at each step of the tapering, giving practical limits to the tapering angle.
Slow-light media are of interest in the context of quantum computing and enhanced measurement of quantum effects, with particular emphasis on using slow-light with single photons. We use light-in-flight imaging with a single photon avalanche diode camera-array to image in situ pulse propagation through a slow light medium consisting of heated rubidium vapour. Light-in-flight imaging of slow light propagation enables direct visualisation of a series of physical effects including simultaneous observation of spatial pulse compression and temporal pulse dispersion. Additionally, the single-photon nature of the camera allows for observation of the group velocity of single photons with measured single-photon fractional delays greater than 1 over 1 cm of propagation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا