Do you want to publish a course? Click here

Halpha imaging observations of early-type galaxies from the ATLAS3D survey

257   0   0.0 ( 0 )
 Added by Giuseppe Gavazzi
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The traditional knowledge of the mechanisms that caused the formation and evolution of early-type galaxies (ETG) in a hierarchical universe was challenged by the unexpected finding by ATLAS3D that 86% of the ETGs show signs of a fast-rotating disk. This implies a common origin of most spiral galaxies, followed by a quenching phase, while only a minority of the most massive systems are slow rotators and were likely to be the products of merger events. Our aim is to improve our knowledge on the content and distribution of ionized hydrogen and their usage to form stars in a representative sample of ETGs for which the kinematics and detailed morphological classification were known from ATLAS3D. Using narrow-band filters centered on the redshifted Halpha line along with a broad-band (r-Gunn) filter to recover the stellar continuum, we observed or collected existing imaging observations for 147 ETGs (including members of the Virgo cluster) that are representative of the whole ATLAS3D survey. Fifty-five ETGs (37%) were detected in the Halpha line above our detection threshold, (Halpha E.W. <= -1 AA), and 21 harbor a strong source (Halpha E.W. <=-5 AA). The strong Halpha emitters appear associated with low-mass (M 10^10 M_odot) S0 galaxies that contain conspicuous stellar and gaseous discs. These harbor significant star formation at their interior, including their nuclei. The weak Halpha emitters are almost one order of magnitude more massive, contain gas-poor discs and harbor an AGN at their centers. Their emissivity is dominated by [NII] and does not imply star formation. The 92 undetected ETGs are gas-free systems that lack a disc and exhibit passive spectra even in their nuclei. These pieces of evidence reinforce the conclusion that the evolution of ETGs followed the secular channel for the less massive systems and the dry merging channel for the most massive galaxies.



rate research

Read More

We present the Combined Array for Research in Millimeter Astronomy (CARMA) ATLAS3D molecular gas imaging survey, a systematic study of the distribution and kinematics of molecular gas in CO-rich early-type galaxies. Our full sample of 40 galaxies (30 newly mapped and 10 taken from the literature) is complete to a 12CO(1-0) integrated flux of 18.5 Jy km/s, and it represents the largest, best-studied sample of its type to date. A comparison of the CO distribution of each galaxy to the g-r color image (representing dust) shows that the molecular gas and dust distributions are in good agreement and trace the same underlying interstellar medium. The galaxies exhibit a variety of CO morphologies, including discs (50%), rings (15%), bars+rings (10%), spiral arms (5%), and mildly (12.5%) and strongly (7.5%) disrupted morphologies. There appear to be weak trends between galaxy mass and CO morphology, whereby the most massive galaxies in the sample tend to have molecular gas in a disc morphology. We derive a lower limit to the total accreted molecular gas mass across the sample of 2.48x10^10 Msuns, or approximately 8.3x10^8 Msuns per minor merger within the sample, consistent with minor merger stellar mass ratios.
The star formation properties of early-type galaxies (ETGs) are currently the subject of considerable interest, particularly whether they differ from those of gas-rich spirals. We perform a systematic study of star formation in a large sample of local ETGs using polycyclic aromatic hydrocarbon (PAH) and dust emission, focusing on the galaxies star formation rates (SFRs) and star formation efficiencies (SFEs). Our sample is composed of the 260 ETGs from the ATLAS3D survey, from which we use the cold gas measurements (HI and CO). The SFRs are estimated from stellar, PAH and dust fits to spectral energy distributions created from new AKARI measurements and literature data from WISE and 2MASS. The mid-infrared luminosities of non-CO-detected galaxies are well correlated with their stellar luminosities, showing that they trace (circum)stellar dust emission. CO-detected galaxies show an excess above these correlations, uncorrelated with their stellar luminosities, indicating that they likely contain PAHs and dust of interstellar origin. PAH and dust luminosities of CO-detected galaxies show tight correlations with their molecular gas masses, and the derived current SFRs are typically 0.01-1 Msun/yr. These SFRs systematically decrease with stellar age at fixed stellar mass, while they correlate nearly linearly with stellar mass at fixed age. The majority of local ETGs follow the same star-formation law as local star-forming galaxies, and their current SFEs do not depend on either stellar mass or age. Our results clearly indicate that molecular gas is fueling current star formation in local ETGs, that appear to acquire this gas via mechanisms regulated primarily by stellar mass. The current SFEs of local ETGs are similar to those of local star-forming galaxies, indicating that their low SFRs are likely due to smaller cold gas fractions rather than a suppression of star formation.
We use the Atlas3D sample to perform a study of the intrinsic shapes of early-type galaxies, taking advantage of the available combined photometric and kinematic data. Based on our ellipticity measurements from the Sloan Digital Sky Survey Data Release 7, and additional imaging from the Isaac Newton Telescope, we first invert the shape distribution of fast and slow rotators under the assumption of axisymmetry. The so-obtained intrinsic shape distribution for the fast rotators can be described with a Gaussian with a mean flattening of q=0.25 and standard deviation sigma_q = 0.14, and an additional tail towards rounder shapes. The slow rotators are much rounder, and are well described with a Gaussian with mean q = 0.63 and sigma_q =0.09. We then checked that our results were consistent when applying a different and independent method to obtain intrinsic shape distributions, by fitting the observed ellipticity distributions directly using Gaussian parametrisations for the intrinsic axis ratios. Although both fast and slow rotators are identified as early-type galaxies in morphological studies, and in many previous shape studies are therefore grouped together, their shape distributions are significantly different, hinting at different formation scenarios. The intrinsic shape distribution of the fast rotators shows similarities with the spiral galaxy population. Including the observed kinematic misalignment in our intrinsic shape study shows that the fast rotators are predominantly axisymmetric, with only very little room for triaxiality. For the slow rotators though there are very strong indications that they are (mildly) triaxial.
We present the results of a high-resolution, 5 GHz, Karl G. Jansky Very Large Array study of the nuclear radio emission in a representative subset of the Atlas3D survey of early-type galaxies (ETGs). We find that 51 +/- 4% of the ETGs in our sample contain nuclear radio emission with luminosities as low as 10^18 W/Hz. Most of the nuclear radio sources have compact (< 25-110 pc) morphologies, although < 10% display multi-component core+jet or extended jet/lobe structures. Based on the radio continuum properties, as well as optical emission line diagnostics and the nuclear X-ray properties, we conclude that the majority of the central 5 GHz sources detected in the Atlas3D galaxies are associated with the presence of an active galactic nucleus (AGN). However, even at sub-arcsecond spatial resolution, the nuclear radio emission in some cases appears to arise from low-level nuclear star formation rather than an AGN, particularly when molecular gas and a young central stellar population is present. This is in contrast to popular assumptions in the literature that the presence of a compact, unresolved, nuclear radio continuum source universally signifies the presence of an AGN. Additionally, we examine the relationships between the 5 GHz luminosity and various galaxy properties including the molecular gas mass and - for the first time - the global kinematic state. We discuss implications for the growth, triggering, and fueling of radio AGNs, as well as AGN-driven feedback in the continued evolution of nearby ETGs.
116 - L. M. Young , N. Scott , P. Serra 2013
We present a study of the cold gas contents of the Atlas3D early-type galaxies, in the context of their optical colours, near-UV colours, and Hbeta absorption line strengths. Early-type (elliptical and lenticular) galaxies are not as gas-poor as previously thought, and at least 40% of local early-type galaxies are now known to contain molecular and/or atomic gas. This cold gas offers the opportunity to study recent galaxy evolution through the processes of cold gas acquisition, consumption (star formation), and removal. Molecular and atomic gas detection rates range from 10% to 34% in red sequence early-type galaxies, depending on how the red sequence is defined, and from 50% to 70% in blue early-type galaxies. Notably, massive red sequence early-type galaxies (stellar masses > 5e10 Msun, derived from dynamical models) are found to have HI masses up to M(HI)/Mstar ~ 0.06 and H_2 masses up to M(H$_2$)/Mstar ~ 0.01. Some 20% of all massive early-type galaxies may have retained atomic and/or molecular gas through their transition to the red sequence. However, kinematic and metallicity signatures of external gas accretion (either from satellite galaxies or the intergalactic medium) are also common, particularly at stellar masses <= 5e10 Msun, where such signatures are found in ~ 50% of H$_2$-rich early-type galaxies. Our data are thus consistent with a scenario in which fast rotator early-type galaxies are quenched former spiral galaxies which have undergone some bulge growth processes, and in addition, some of them also experience cold gas accretion which can initiate a period of modest star formation activity. We discuss implications for the interpretation of colour-magnitude diagrams.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا