Do you want to publish a course? Click here

A star formation study of the ATLAS3D early-type galaxies with the AKARI all-sky survey

60   0   0.0 ( 0 )
 Added by Takuma Kokusho
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The star formation properties of early-type galaxies (ETGs) are currently the subject of considerable interest, particularly whether they differ from those of gas-rich spirals. We perform a systematic study of star formation in a large sample of local ETGs using polycyclic aromatic hydrocarbon (PAH) and dust emission, focusing on the galaxies star formation rates (SFRs) and star formation efficiencies (SFEs). Our sample is composed of the 260 ETGs from the ATLAS3D survey, from which we use the cold gas measurements (HI and CO). The SFRs are estimated from stellar, PAH and dust fits to spectral energy distributions created from new AKARI measurements and literature data from WISE and 2MASS. The mid-infrared luminosities of non-CO-detected galaxies are well correlated with their stellar luminosities, showing that they trace (circum)stellar dust emission. CO-detected galaxies show an excess above these correlations, uncorrelated with their stellar luminosities, indicating that they likely contain PAHs and dust of interstellar origin. PAH and dust luminosities of CO-detected galaxies show tight correlations with their molecular gas masses, and the derived current SFRs are typically 0.01-1 Msun/yr. These SFRs systematically decrease with stellar age at fixed stellar mass, while they correlate nearly linearly with stellar mass at fixed age. The majority of local ETGs follow the same star-formation law as local star-forming galaxies, and their current SFEs do not depend on either stellar mass or age. Our results clearly indicate that molecular gas is fueling current star formation in local ETGs, that appear to acquire this gas via mechanisms regulated primarily by stellar mass. The current SFEs of local ETGs are similar to those of local star-forming galaxies, indicating that their low SFRs are likely due to smaller cold gas fractions rather than a suppression of star formation.



rate research

Read More

329 - E. Kilerci Eser , T. Goto , Y. Doi 2014
We present a new catalog of 118 Ultraluminous Infrared Galaxies (ULIRGs) and one Hyperluminous Infrared Galaxy (HLIRG) by crossmatching AKARI all-sky survey with the Sloan Digital Sky Survey Data Release 10 (SDSS DR10) and the Final Data Release of the Two-Degree Field Galaxy Redshift Survey (2dFGRS). 40 of the ULIRGs and one HLIRG are new identifications. We find that ULIRGs are interacting pair galaxies or ongoing/post mergers. This is consistent with the widely accepted view: ULIRGs are major mergers of disk galaxies. We confirm the previously known positive trend between the AGN fraction and IR luminosity. We show that ULIRGs have a large off-set from the main sequence up to z~1; their off-set from the z~2 main sequence is relatively smaller. We find a consistent result with the previous studies showing that compared to local star forming SDSS galaxies of similar mass, local ULIRGs have lower oxygen abundances. We for the first time demonstrate that ULIRGs follow the fundamental metallicity relation (FMR). The scatter of ULIRGs around the FMR (0.09 dex - 0.5 dex) is comparable with the scatter of z~2-3 galaxies. Their optical colors show that ULIRGs are mostly blue galaxies and this agrees with previous findings. We provide the largest local (0.050 < z < 0.487) ULIRG catalog with stellar masses, SFRs, gas metallicities and optical colors. Our catalog provides us active galaxies analogous to high-z galaxies in the local Universe where they can be rigorously scrutinized.
The traditional knowledge of the mechanisms that caused the formation and evolution of early-type galaxies (ETG) in a hierarchical universe was challenged by the unexpected finding by ATLAS3D that 86% of the ETGs show signs of a fast-rotating disk. This implies a common origin of most spiral galaxies, followed by a quenching phase, while only a minority of the most massive systems are slow rotators and were likely to be the products of merger events. Our aim is to improve our knowledge on the content and distribution of ionized hydrogen and their usage to form stars in a representative sample of ETGs for which the kinematics and detailed morphological classification were known from ATLAS3D. Using narrow-band filters centered on the redshifted Halpha line along with a broad-band (r-Gunn) filter to recover the stellar continuum, we observed or collected existing imaging observations for 147 ETGs (including members of the Virgo cluster) that are representative of the whole ATLAS3D survey. Fifty-five ETGs (37%) were detected in the Halpha line above our detection threshold, (Halpha E.W. <= -1 AA), and 21 harbor a strong source (Halpha E.W. <=-5 AA). The strong Halpha emitters appear associated with low-mass (M 10^10 M_odot) S0 galaxies that contain conspicuous stellar and gaseous discs. These harbor significant star formation at their interior, including their nuclei. The weak Halpha emitters are almost one order of magnitude more massive, contain gas-poor discs and harbor an AGN at their centers. Their emissivity is dominated by [NII] and does not imply star formation. The 92 undetected ETGs are gas-free systems that lack a disc and exhibit passive spectra even in their nuclei. These pieces of evidence reinforce the conclusion that the evolution of ETGs followed the secular channel for the less massive systems and the dry merging channel for the most massive galaxies.
We present the stellar population content of early-type galaxies from the Atlas3D survey. Using spectra integrated within apertures covering up to one effective radius, we apply two methods: one based on measuring line-strength indices and applying single stellar population (SSP) models to derive SSP-equivalent values of stellar age, metallicity, and alpha enhancement; and one based on spectral fitting to derive non-parametric star-formation histories, mass-weighted average values of age, metallicity, and half-mass formation timescales. Using homogeneously derived effective radii and dynamically-determined galaxy masses, we present the distribution of stellar population parameters on the Mass Plane (M_JAM, Sigma_e, R_maj), showing that at fixed mass, compact early-type galaxies are on average older, more metal-rich, and more alpha-enhanced than their larger counterparts. From non-parametric star-formation histories, we find that the duration of star formation is systematically more extended in lower mass objects. Assuming that our sample represents most of the stellar content of todays local Universe, approximately 50% of all stars formed within the first 2 Gyr following the big bang. Most of these stars reside today in the most massive galaxies (>10^10.5 M_sun), which themselves formed 90% of their stars by z~2. The lower-mass objects, in contrast, have formed barely half their stars in this time interval. Stellar population properties are independent of environment over two orders of magnitude in local density, varying only with galaxy mass. In the highest-density regions of our volume (dominated by the Virgo cluster), galaxies are older, alpha-enhanced and have shorter star-formation histories with respect to lower density regions.
We present a far-infrared all-sky atlas from a sensitive all-sky survey using the Japanese $AKARI$ satellite. The survey covers $> 99$% of the sky in four photometric bands centred at 65 $mu$m, 90 $mu$m, 140 $mu$m, and 160 $mu$m with spatial resolutions ranging from 1 to 1.5 arcmin. These data provide crucial information for the investigation and characterisation of the properties of dusty material in the Interstellar Medium (ISM), since significant portion of its energy is emitted between $sim$50 and 200 $mu$m. The large-scale distribution of interstellar clouds, their thermal dust temperatures and column densities, can be investigated with the improved spatial resolution compared to earlier all-sky survey observations. In addition to the point source distribution, the large-scale distribution of ISM cirrus emission, and its filamentary structure, are well traced. We have made the first public release of the full-sky data to provide a legacy data set for use by the astronomical community.
We demonstrate the capability of AKARI for mapping diffuse far-infrared emission and achieved reliability of all-sky diffuse map. We have conducted an all-sky survey for more than 94 % of the whole sky during cold phase of AKARI observation in 2006 Feb. -- 2007 Aug. The survey in far-infrared waveband covers 50 um -- 180 um with four bands centered at 65 um, 90 um, 140 um, and 160 um and spatial resolution of 3000 -- 4000 (FWHM).This survey has allowed us to make a revolutionary improvement compared to the IRAS survey that was conducted in 1983 in both spatial resolution and sensitivity after more than a quarter of a century. Additionally, it will provide us the first all-sky survey data with high-spatial resolution beyond 100 um. Considering its extreme importance of the AKARI far-infrared diffuse emission map, we are now investigating carefully the quality of the data for possible release of the archival data. Critical subjects in making image of diffuse emission from detected signal are the transient response and long-term stability of the far-infrared detectors. Quantitative evaluation of these characteristics is the key to achieve sensitivity comparable to or better than that for point sources (< 20 -- 95 [MJy/sr]). We describe current activities and progress that are focused on making high quality all-sky survey images of the diffuse far-infrared emission.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا