Do you want to publish a course? Click here

The Atlas3D project -- XXVII. Cold Gas and the Colours and Ages of Early-type Galaxies

116   0   0.0 ( 0 )
 Added by Lisa M. Young
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a study of the cold gas contents of the Atlas3D early-type galaxies, in the context of their optical colours, near-UV colours, and Hbeta absorption line strengths. Early-type (elliptical and lenticular) galaxies are not as gas-poor as previously thought, and at least 40% of local early-type galaxies are now known to contain molecular and/or atomic gas. This cold gas offers the opportunity to study recent galaxy evolution through the processes of cold gas acquisition, consumption (star formation), and removal. Molecular and atomic gas detection rates range from 10% to 34% in red sequence early-type galaxies, depending on how the red sequence is defined, and from 50% to 70% in blue early-type galaxies. Notably, massive red sequence early-type galaxies (stellar masses > 5e10 Msun, derived from dynamical models) are found to have HI masses up to M(HI)/Mstar ~ 0.06 and H_2 masses up to M(H$_2$)/Mstar ~ 0.01. Some 20% of all massive early-type galaxies may have retained atomic and/or molecular gas through their transition to the red sequence. However, kinematic and metallicity signatures of external gas accretion (either from satellite galaxies or the intergalactic medium) are also common, particularly at stellar masses <= 5e10 Msun, where such signatures are found in ~ 50% of H$_2$-rich early-type galaxies. Our data are thus consistent with a scenario in which fast rotator early-type galaxies are quenched former spiral galaxies which have undergone some bulge growth processes, and in addition, some of them also experience cold gas accretion which can initiate a period of modest star formation activity. We discuss implications for the interpretation of colour-magnitude diagrams.



rate research

Read More

For early-type galaxies, the ability to sustain a corona of hot, X-ray emitting gas could have played a key role in quenching their star-formation history. Yet, it is still unclear what drives the precise amount of hot gas around these galaxies. By combining photometric and spectroscopic measurements for the early-type galaxies observed during the Atlas3D integral-field survey with measurements of their X-ray luminosity based on X-ray data of both low and high spatial resolution we conclude that the hot-gas content of early-type galaxies can depend on their dynamical structure. Specifically, whereas slow rotators generally have X-ray halos with luminosity L_X,gas and temperature T values that are in line with what is expected if the hot-gas emission is sustained by the thermalisaton of the kinetic energy carried by the stellar-mass loss material, fast rotators tend to display L_X,gas values that fall consistently below the prediction of this model, with similar T values that do not scale with the stellar kinetic energy as observed in the case of slow rotators. Considering that fast rotators are likely to be intrinsically flatter than slow rotators, and that the few L_X,gas-deficient slow rotators also happen to be relatively flat, the observed L_X,gas deficiency in these objects would support the hypothesis whereby flatter galaxies have a harder time in retaining their hot gas. We discuss the implications that a different hot-gas content could have on the fate of both acquired and internally-produced gaseous material, considering in particular how the L_X,gas deficiency of fast rotators would make them more capable to recycle the stellar-mass loss material into new stars than slow rotators. This is consistent with the finding that molecular gas and young stars are detected only in fast rotators in the Atlas3D sample, and that fast rotators tend to dustier than slow rotators. [Abridged]
We have carried out a survey for 12CO J=1-0 and J=2-1 emission in the 260 early-type galaxies of the volume-limited Atlas3D sample, with the goal of connecting their star formation and assembly histories to their cold gas content. This is the largest volume-limited CO survey of its kind and is the first to include many Virgo Cluster members. Sample members are dynamically hot galaxies with a median stellar mass 3times 10^{10} Msun; they are selected by morphology rather than colour, and the bulk of them lie on the red sequence. The overall CO detection rate is 56/259 = 0.22 error 0.03, with no dependence on K luminosity and only a modest dependence on dynamical mass. There are a dozen CO detections among the Virgo Cluster members; statistical analysis of their H_2 mass distributions and their dynamical status within the cluster shows that the clusters influence on their molecular masses is subtle at best, even though (unlike spirals) they seem to be virialized within the cluster. We suggest that the cluster members have retained their molecular gas through several Gyr residences in the cluster. There are also a few extremely CO-rich early-type galaxies with H_2 masses >= 10^9 Msun, and these are in low density environments. We do find a significant trend between molecular content and the stellar specific angular momentum. The galaxies of low angular momentum also have low CO detection rates, suggesting that their formation processes were more effective at destroying molecular gas or preventing its re-accretion. We speculate on the implications of these data for the formation of various sub-classes of early-type galaxies.
We use the Atlas3D sample to perform a study of the intrinsic shapes of early-type galaxies, taking advantage of the available combined photometric and kinematic data. Based on our ellipticity measurements from the Sloan Digital Sky Survey Data Release 7, and additional imaging from the Isaac Newton Telescope, we first invert the shape distribution of fast and slow rotators under the assumption of axisymmetry. The so-obtained intrinsic shape distribution for the fast rotators can be described with a Gaussian with a mean flattening of q=0.25 and standard deviation sigma_q = 0.14, and an additional tail towards rounder shapes. The slow rotators are much rounder, and are well described with a Gaussian with mean q = 0.63 and sigma_q =0.09. We then checked that our results were consistent when applying a different and independent method to obtain intrinsic shape distributions, by fitting the observed ellipticity distributions directly using Gaussian parametrisations for the intrinsic axis ratios. Although both fast and slow rotators are identified as early-type galaxies in morphological studies, and in many previous shape studies are therefore grouped together, their shape distributions are significantly different, hinting at different formation scenarios. The intrinsic shape distribution of the fast rotators shows similarities with the spiral galaxy population. Including the observed kinematic misalignment in our intrinsic shape study shows that the fast rotators are predominantly axisymmetric, with only very little room for triaxiality. For the slow rotators though there are very strong indications that they are (mildly) triaxial.
128 - T. Kokusho , H. Kaneda , M. Bureau 2018
The properties of the dust in the cold and hot gas phases of early-type galaxies (ETGs) are key to understand ETG evolution. We thus conducted a systematic study of the dust in a large sample of local ETGs, focusing on relations between the dust and the molecular, atomic, and X-ray gas of the galaxies, as well as their environment. We estimated the dust temperatures and masses of the 260 ETGs from the ATLAS3D survey, using fits to their spectral energy distributions primarily constructed from AKARI measurements. We also used literature measurements of the cold (CO and HI) and X-ray gas phases. Our ETGs show no correlation between their dust and stellar masses, suggesting inefficient dust production by stars and/or dust destruction in X-ray gas. The global dust-to-gas mass ratios of ETGs are generally lower than those of late-type galaxies, likely due to dust-poor HI envelopes in ETGs. They are also higher in Virgo Cluster ETGs than in group and field ETGs, but the same ratios measured in the central parts of the galaxies only are independent of galaxy environment. Slow-rotating ETGs have systematically lower dust masses than fast-rotating ETGs. The dust masses and X-ray luminosities are correlated in fast-rotating ETGs, whose star formation rates are also correlated with the X-ray luminosities. The correlation between dust and X-rays in fast-rotating ETGs appears to be caused by residual star formation, while slow-rotating ETGs are likely well evolved, and thus exhausting their dust. These results appear consistent with the postulated evolution of ETGs, whereby fast-rotating ETGs form by mergers of late-type galaxies and associated bulge growth, while slow-rotating ETGs form by (dry) mergers of fast-rotating ETGs. Central cold dense gas appears to be resilient against ram pressure stripping, suggesting that Virgo Cluster ETGs may not suffer strong related star formation suppression.
We present the results of a high-resolution, 5 GHz, Karl G. Jansky Very Large Array study of the nuclear radio emission in a representative subset of the Atlas3D survey of early-type galaxies (ETGs). We find that 51 +/- 4% of the ETGs in our sample contain nuclear radio emission with luminosities as low as 10^18 W/Hz. Most of the nuclear radio sources have compact (< 25-110 pc) morphologies, although < 10% display multi-component core+jet or extended jet/lobe structures. Based on the radio continuum properties, as well as optical emission line diagnostics and the nuclear X-ray properties, we conclude that the majority of the central 5 GHz sources detected in the Atlas3D galaxies are associated with the presence of an active galactic nucleus (AGN). However, even at sub-arcsecond spatial resolution, the nuclear radio emission in some cases appears to arise from low-level nuclear star formation rather than an AGN, particularly when molecular gas and a young central stellar population is present. This is in contrast to popular assumptions in the literature that the presence of a compact, unresolved, nuclear radio continuum source universally signifies the presence of an AGN. Additionally, we examine the relationships between the 5 GHz luminosity and various galaxy properties including the molecular gas mass and - for the first time - the global kinematic state. We discuss implications for the growth, triggering, and fueling of radio AGNs, as well as AGN-driven feedback in the continued evolution of nearby ETGs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا