Do you want to publish a course? Click here

Comparative study of electronic and magnetic properties of $M$Pc ($M$ = Fe, Co) molecules physisorbed on 2D MoS$_2$ and graphene

104   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we have done a comparative study of electronic and magnetic properties of iron phthalocyanine (FePc) and cobalt phthalocyanine (CoPc) molecules physisorbed on monolayer of MoS$_2$ and graphene by using density functional theory. Various different types of physisorption sites have been considered for both surfaces. Our calculations reveal that the $M$Pc molecules prefer the S-top position on MoS$_2$. However, on graphene, FePc molecule prefers the bridge position while CoPc molecule prefers the top position. The $M$Pc molecules are physisorbed strongly on the MoS$_2$ surface than the graphene ($sim$ 2.5 eV higher physisorption energy). Analysis of magnetic properties indicates the presence of strong spin dipole moment opposite to the spin moment and hence a huge reduction of effective spin moment can be observed. Our calculations of magnetic anisotropy energies using both variational approach and $2^{nd}$ order perturbation approach indicate no significant changes after physisorption. In case of FePc, an out-of-plane easy axis and in case of CoPc, an in-plane easy axis can be seen. Calculations of work function indicate a reduction of MoS$_2$ work function $sim$ 1 eV due to physisorption of $M$Pc molecules while it does not change significantly in case of graphene.



rate research

Read More

The effect of substituting iron and zinc for cobalt in CaBaCo$_4$O$_7$ has been investigated using neutron diffraction and x-ray absorption spectroscopy. The orthorhombic distortion present in the parent compound CaBaCo$_4$O$_7$ decreases with increasing the content of either Fe or Zn. The samples CaBaCo$_3$ZnO$_7$ and CaBaCo$_{4-x}$Fe$_x$O$_7$ with $x leq 1.5$ are metrically hexagonal but much better refinements in the neutron diffraction patterns are obtained using an orthorhombic unit cell. The two types of substitution have opposite effects on the structural and magnetic properties. Fe atoms preferentially occupy the sites at the triangular layer. Thus, the replacement of Co by Fe supresses the ferrimagnetic ordering and CaBaCo$_{4-x}$Fe$_x$O$_7$ samples are antiferromagnetically ordered with a new propagation vector k=(1/3,0,0). However, the Zn atoms prefer occupying the Kagome layer, which is very detrimental for the long range magnetic interactions giving rise to a magnetic glass. The oxidation state of iron and zinc is found to be 3+ and 2+, respectively, independently of the content. Therefore, the average Co oxidation state changes accordingly with the Fe$^{3+}$ or Zn$^{2+}$ doping. Also, x-ray absorption spectroscopy data confirms the different preferential occupation for both Fe and Zn cations. The combined information obtained by neutron diffraction and x-ray absorption spectroscopy indicates that cobalt atoms can be either in a fluctuating Co$^{2+}$/Co$^{3+}$ valence state or, alternatively, Co$^{2+}$ and Co$^{3+}$ ions being randomly distributed in the lattice. These results explain the occurrence of local disorder in the CoO$_4$ tetrahedra obtained by EXAFS. An anomaly in the lattice parameters and an increase in the local disorder is observed only at the ferrimagnetic transition for CaBaCo$_4$O$_7$ revealing the occurrence of local magneto-elastic coupling.
To date, germanene has only been synthesized on metallic substrates. A metallic substrate is usually detrimental for the two-dimensional Dirac nature of germanene because the important electronic states near the Fermi level of germanene can hybridize with the electronic states of the metallic substrate. Here we report the successful synthesis of germanene on molybdenum disulfide (MoS$_2$), a band gap material. Pre-existing defects in the MoS$_2$ surface act as preferential nucleation sites for the germanene islands. The lattice constant of the germanene layer (3.8 $pm$ 0.2 AA) is about 20% larger than the lattice constant of the MoS$_2$ substrate (3.16 AA). Scanning tunneling spectroscopy measurements and density functional theory calculations reveal that there are, besides the linearly dispersing bands at the $K$ points, two parabolic bands that cross the Fermi level at the $Gamma$ point.
We report the structural, transport, electronic, and magnetic properties of Co$_2$FeGa Heusler alloy nanoparticles. The Rietveld refinements of x-ray diffraction (XRD) data with the space group Fm$bar {3}$m clearly demonstrates that the nanoparticles are of single phase. The particle size (D) decreases with increasing the SiO$_2$ concentration. The Bragg peak positions and the inter-planer spacing extracted from high-resolution transmission electron microscopy image and selected area electron diffraction are in well agreement with data obtained from XRD. The coercivity initially increases from 127~Oe to 208~Oe between D = 8.5~nm and 12.5~nm, following the D$^{-3/2}$ dependence and then decreases with further increasing D up to 21.5~nm with a D$^{-1}$ dependence, indicating the transition from single domain to multidomain regime. The effective magnetic anisotropic constant behaves similarly as coercivity, which confirms this transition. A complex scattering mechanisms have been fitted to explain the electronic transport properties of these nanoparticles. In addition we have studied core-level and valence band spectra using photoemission spectroscopy, which confirm the hybridization between $d$ states of Co/Fe. Further nanoparticle samples synthesized by co-precipitation method show higher saturation magnetization. The presence of Raman active modes can be associated with the high chemical ordering, which motivates for detailed temperature dependent structural investigation using synchrotron radiation and neutron sources.
The results of measurements of XPS spectra and magnetic properties of graphene/Co composites prepared by adding of CoCl$_2$x6H$_2$O diluted in ethyl alcohol to highly-splitted graphite are presented. XPS Co 2p measurements show two sets of 2p$_{3/2,1/2}$-lines belonging to oxidized and metallic Co-atoms. This means that metal in composite is partly oxidized. This conclusion is confirmed by magnetic measurements which show the presence of the main (from the metal) and shifted (from the oxide) hysteresis loops. The presence of oxide layer on the metal surface prevents the metal from the full oxidation and (as shown by magnetic measurements) provides the preservation of ferromagnetic properties after long exposure in ambient air which enables the use of graphene/metal composites in spintronics devices.
300 - M. Sprinkle , J. Hicks , A. Tejeda 2010
We review progress in developing epitaxial graphene as a material for carbon electronics. In particular, improvements in epitaxial graphene growth, interface control and the understanding of multilayer epitaxial graphenes electronic properties are discussed. Although graphene grown on both polar faces of SiC is addressed, our discussions will focus on graphene grown on the (000-1) C-face of SiC. The unique properties of C-face multilayer epitaxial graphene have become apparent. These films behave electronically like a stack of nearly independent graphene sheets rather than a thin Bernal-stacked graphite sample. The origin of multilayer graphenes electronic behavior is its unique highly-ordered stacking of non-Bernal rotated graphene planes. While these rotations do not significantly affect the inter-layer interactions, they do break the stacking symmetry of graphite. It is this broken symmetry that causes each sheet to behave like an isolated graphene plane.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا