Do you want to publish a course? Click here

Structural, magnetic and electronic properties of CaBaCo4-xMxO7 (M= Fe, Zn)

104   0   0.0 ( 0 )
 Added by Vera Cuartero
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The effect of substituting iron and zinc for cobalt in CaBaCo$_4$O$_7$ has been investigated using neutron diffraction and x-ray absorption spectroscopy. The orthorhombic distortion present in the parent compound CaBaCo$_4$O$_7$ decreases with increasing the content of either Fe or Zn. The samples CaBaCo$_3$ZnO$_7$ and CaBaCo$_{4-x}$Fe$_x$O$_7$ with $x leq 1.5$ are metrically hexagonal but much better refinements in the neutron diffraction patterns are obtained using an orthorhombic unit cell. The two types of substitution have opposite effects on the structural and magnetic properties. Fe atoms preferentially occupy the sites at the triangular layer. Thus, the replacement of Co by Fe supresses the ferrimagnetic ordering and CaBaCo$_{4-x}$Fe$_x$O$_7$ samples are antiferromagnetically ordered with a new propagation vector k=(1/3,0,0). However, the Zn atoms prefer occupying the Kagome layer, which is very detrimental for the long range magnetic interactions giving rise to a magnetic glass. The oxidation state of iron and zinc is found to be 3+ and 2+, respectively, independently of the content. Therefore, the average Co oxidation state changes accordingly with the Fe$^{3+}$ or Zn$^{2+}$ doping. Also, x-ray absorption spectroscopy data confirms the different preferential occupation for both Fe and Zn cations. The combined information obtained by neutron diffraction and x-ray absorption spectroscopy indicates that cobalt atoms can be either in a fluctuating Co$^{2+}$/Co$^{3+}$ valence state or, alternatively, Co$^{2+}$ and Co$^{3+}$ ions being randomly distributed in the lattice. These results explain the occurrence of local disorder in the CoO$_4$ tetrahedra obtained by EXAFS. An anomaly in the lattice parameters and an increase in the local disorder is observed only at the ferrimagnetic transition for CaBaCo$_4$O$_7$ revealing the occurrence of local magneto-elastic coupling.



rate research

Read More

FeGa3 is a well known d-p hybridization induced intermetallic bandgap semiconductor. In this work, we present the experimental and theoretical results on the effect of Al substitution in FeGa3, obtained by x-ray diffraction (XRD), temperature dependent resistance measurement, room temperature Mossbauer measurements and density functional theory based electronic structure calculations. It is observed that upto x = 0.178 in Fe(AlxGa1-x)3, which is the maximum range studied in this work, Al substitution reduces the lattice parameters a and c preserving the parent tetragonal P42/mnm crystal structure of FeGa3. The bandgap of Fe(AlxGa1-x)3 for x = 0.178 is reduced by ~ 24% as compared to FeGa3. Rietveld refinement of the XRD data shows that the Al atoms replace Ga atoms located at the 8j sites in FeGa3. A comparison of the trends of the lattice parameters and energy bandgap observed in the calculations and the experiments also confirms that Al primarily replaces the Ga atoms in the 8j site.
We report on the metalorganic chemical vapor deposition (MOCVD) of GaN:Fe and (Ga,Fe)N layers on c-sapphire substrates and their thorough characterization via high-resolution x-ray diffraction (HRXRD), transmission electron microscopy (TEM), spatially-resolved energy dispersive X-ray spectroscopy (EDS), secondary-ion mass spectroscopy (SIMS), photoluminescence (PL), Hall-effect, electron-paramagnetic resonance (EPR), and magnetometry employing a superconducting quantum interference device (SQUID). A combination of TEM and EDS reveals the presence of coherent nanocrystals presumably FexN with the composition and lattice parameter imposed by the host. From both TEM and SIMS studies, it is stated that the density of nanocrystals and, thus the Fe concentration increases towards the surface. In layers with iron content x<0.4% the presence of ferromagnetic signatures, such as magnetization hysteresis and spontaneous magnetization, have been detected. We link the presence of ferromagnetic signatures to the formation of Fe-rich nanocrystals, as evidenced by TEM and EDS studies. This interpretation is supported by magnetization measurements after cooling in- and without an external magnetic field, pointing to superparamagnetic properties of the system. It is argued that the high temperature ferromagnetic response due to spinodal decomposition into regions with small and large concentration of the magnetic component is a generic property of diluted magnetic semiconductors and diluted magnetic oxides showing high apparent Curie temperature.
In this paper, we have done a comparative study of electronic and magnetic properties of iron phthalocyanine (FePc) and cobalt phthalocyanine (CoPc) molecules physisorbed on monolayer of MoS$_2$ and graphene by using density functional theory. Various different types of physisorption sites have been considered for both surfaces. Our calculations reveal that the $M$Pc molecules prefer the S-top position on MoS$_2$. However, on graphene, FePc molecule prefers the bridge position while CoPc molecule prefers the top position. The $M$Pc molecules are physisorbed strongly on the MoS$_2$ surface than the graphene ($sim$ 2.5 eV higher physisorption energy). Analysis of magnetic properties indicates the presence of strong spin dipole moment opposite to the spin moment and hence a huge reduction of effective spin moment can be observed. Our calculations of magnetic anisotropy energies using both variational approach and $2^{nd}$ order perturbation approach indicate no significant changes after physisorption. In case of FePc, an out-of-plane easy axis and in case of CoPc, an in-plane easy axis can be seen. Calculations of work function indicate a reduction of MoS$_2$ work function $sim$ 1 eV due to physisorption of $M$Pc molecules while it does not change significantly in case of graphene.
Here, we present the theoretical analysis of the structural and electronic degrees of freedom of two different oxide/fluoride perovskite superlattices, KTaO$_3$/KZnF$_3$ and KTaO$_3$/KNiF$_3$. Using first-principles calculations, we found the appearance of a two-dimensional electron, 2DEG, and hole, 2DHG, gases as a function of the number of layers of the different pristine materials. We demonstrate that the phonon-dynamics at the KTO/K$M$F superlattices play a crucial role in the appearance of these effects. Additionally, our results reveal a rather sizeable Rashba-type spin-splitting at these interfaces in comparison to another oxide/oxide counterparts.
The electronic and magnetic properties of transition metal dichalcogenides are known to be extremely sensitive to their structure. In this paper we study the effect of structure on the electronic and magnetic properties of mono- and bilayer $VSe_2$ films grown using molecular beam epitaxy. $VSe_2$ has recently attracted much attention due to reports of emergent ferromagnetism in the 2D limit. To understand this important compound, high quality 1T and distorted 1T films were grown at temperatures of 200 $^text{o}$C and 450 $^text{o}$C respectively and studied using 4K Scanning Tunneling Microscopy/Spectroscopy. The measured density of states and the charge density wave (CDW) patterns were compared to band structure and phonon dispersion calculations. Films in the 1T phase reveal different CDW patterns in the first layer compared to the second. Interestingly, we find the second layer of the 1T-film shows a CDW pattern with 4a $times$ 4a periodicity which is the 2D version of the bulk CDW observed in this compound. Our phonon dispersion calculations confirm the presence of a soft phonon at the correct wavevector that leads to this CDW. In contrast, the first layer of distorted 1T phase films shows a strong stripe feature with varying periodicities, while the second layer displays no observable CDW pattern. Finally, we find that the monolayer 1T $VSe_2$ film is weakly ferromagnetic, with ~ $3.5 {mu}_B$ per unit similar to previous reports.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا