No Arabic abstract
We have performed density functional theory calculation and tight binging analysis in order to investigate the mechanism for the giant Rashba-type spin splitting (RSS) observed in Bi/Ag(111). We find that local orbital angular momentum induces momentum and spin dependent charge distribution which results in spin-dependent hopping. We show that the spin-dependent interatomic-hopping in Bi/Ag(111) works as a strong effective field and induces the giant RSS, indicating that the giant RSS is driven by hopping, not by a uniform electric field. The effective field from the hopping energy difference amounts to be ~18 V/{AA}. This new perspective on the RSS gives us a hint for the giant RSS mechanism in general and should provide a strategy for designing new RSS materials by controlling spin-dependence of hopping energy between the neighboring atomic layers.
In inversion-asymmetric semiconductors, spin-orbit coupling induces a k-dependent spin splitting of valence and conduction bands, which is a well-known cause for spin decoherence in bulk and heterostructures. Manipulating nonequilibrium spin coherence in device applications thus requires understanding how valence and conduction band spin splitting affects carrier spin dynamics. This paper studies the relevance of this decoherence mechanism for collective intersubband spin-density excitations (SDEs) in quantum wells. A density-functional formalism for the linear spin-density matrix response is presented that describes SDEs in the conduction band of quantum wells with subbands that may be non-parabolic and spin-split due to bulk or structural inversion asymmetry (Rashba effect). As an example, we consider a 40 nm GaAs/AlGaAs quantum well, including Rashba spin splitting of the conduction subbands. We find a coupling and wavevector-dependent splitting of the longitudinal and transverse SDEs. However, decoherence of the SDEs is not determined by subband spin splitting, due to collective effects arising from dynamical exchange and correlation.
Electric weak links, the term used for those parts of an electrical circuit that provide most of the resistance against the flow of an electrical current, are important elements of many nanodevices. Quantum dots, nanowires and nano-constrictions that bridge two bulk conductors (or superconductors) are examples of such weak links. Here we consider nanostructures where the electronic spin-orbit interaction is strong in the weak link but is unimportant in the bulk conductors, and explore theoretically the role of the spin-orbit active weak link (which we call a Rashba spin splitter) as a source of new spin-based functionality in both normal and superconducting devices. Some recently predicted phenomena, including mechanically-controlled spin- and charge currents as well as the effect of spin polarization of superconducting Cooper pairs, are reviewed.
We demonstrate that the selective equal spin Andreev reflection (SESAR) spectroscopy can be used in STM experiments to distinguish the zero-energy Majorana quasiparticles from the ordinary fermionic states of the Rashba chain. Such technique, designed for probing the p-wave superconductivity, could be applied to the intersite pairing of equal-spin electrons in the chain of magnetic Fe atoms deposited on the superconducting Pb substrate. Our calculations of the effective pairing amplitude for individual spin components imply the magnetically polarized Andreev conductance, which can be used to `filter the Majorana quasiparticles from the ordinary in-gap states, although the pure spin current (i.e., perfect polarization) is impossible.
Within an effective Dirac theory the low-energy dispersions of monolayer graphene in the presence of Rashba spin-orbit coupling and spin-degenerate bilayer graphene are described by formally identical expressions. We explore implications of this correspondence for transport by choosing chiral tunneling through pn and pnp junctions as a concrete example. A real-space Greens function formalism based on a tight-binding model is adopted to perform the ballistic transport calculations, which cover and confirm previous theoretical results based on the Dirac theory. Chiral tunneling in monolayer graphene in the presence of Rashba coupling is shown to indeed behave like in bilayer graphene. Combined effects of a forbidden normal transmission and spin separation are observed within the single-band n to p transmission regime. The former comes from real-spin conservation, in analogy with pseudospin conservation in bilayer graphene, while the latter arises from the intrinsic spin-Hall mechanism of the Rashba coupling.
The generation of spin current and spin polarization in 2DEG Rashba system is considered, in which the spin-orbital coupling (SOC) is modulated by an ac gate voltage. By using non-Abelian gauge field method, we show the presence of an additional electric field. This field induces a spin current generated even in the presence of impurity scattering and is related to the time-modulation of the Rashba SOC strength. In addition, the spin precession can be controlled by modulating the modulation frequency of the Rashba SOC strength. It is shown that at high modulation frequency, the precessional motion is suppressed so that the electron spin polarization can be sustained in the 2DEG