Do you want to publish a course? Click here

Coulomb drag and counterflow Seebeck coefficient in bilayer-graphene double layers

71   0   0.0 ( 0 )
 Added by Jiuning Hu
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have fabricated bilayer-graphene double layers separated by a thin ($sim$20 nm) boron nitride layer and performed Coulomb drag and counterflow thermoelectric transport measurements. The measured Coulomb drag resistivity is nearly three orders smaller in magnitude than the intralayer resistivities. The counterflow Seebeck coefficient is found to be well approximated by the difference between Seebeck coefficients of individual layers and exhibit a peak in the regime where two layers have opposite sign of charge carriers. The measured maximum counterflow power factor is $sim$ 700 $mu$W/K$^2$cm at room temperature, promising high power output per mass for lightweight thermoelectric applications. Our devices open a possibility for exploring the novel regime of thermoelectrics with tunable interactions between n-type and p-type channels based on graphene and other two-dimensional materials and their heterostructures.



rate research

Read More

Coulomb drag between parallel quantum wells provides a uniquely sensitive measurement of electron correlations since the drag response depends on interactions only. Recently it has been demonstrated that a new regime of strong interactions can be accessed for devices consisting of two monlolayer graphene (MLG) crystals, separated by few layer hexagonal boron-nitride. Here we report measurement of Coulomb drag in a double bilayer graphene (BLG) stucture, where the interaction potential is anticipated to be yet further enhanced compared to MLG. At low temperatures and intermediate densities a new drag response with inverse sign is observed, distinct from the momentum and energy drag mechanisms previously reported in double MLG. We demonstrate that by varying the device aspect ratio the negative drag component can be suppressed and a response showing excellent agreement with the density and temperature dependance predicted for momentum drag in double BLG is found. Our results pave the way for pursuit of emergent phases in strongly interacting bilayers, such as the exciton condensate.
Coupled 2D sheets of electrons and holes are predicted to support novel quantum phases. Two experiments of Coulomb drag in electron-hole (e-h) double bilayer graphene (DBLG) have reported an unexplained and puzzling sign reversal of the drag signal. However, we show that this effect is due to the multiband character of DBLG. Our multiband Fermi liquid theory produces excellent agreement and captures the key features of the experimental drag resistance for all temperatures. This demonstrates the importance of multiband effects in DBLG: they have a strong effect not only on superfluidity, but also on the drag.
Coulomb interaction between two closely spaced parallel layers of electron system can generate the frictional drag effect by interlayer Coulomb scattering. Employing graphene double layers separated by few layer hexagonal boron nitride (hBN), we investigate density tunable magneto- and Hall-drag under strong magnetic fields. The observed large magneto-drag and Hall-drag signals can be related with Laudau level (LL) filling status of the drive and drag layers. We find that the sign and magnitude of the magneto- and Hall-drag resistivity tensor can be quantitatively correlated to the variation of magneto-resistivity tensors in the drive and drag layers, confirming a theoretical formula for magneto-drag in the quantum Hall regime. The observed weak temperature dependence and $sim B^2$ dependence of the magneto-drag are qualitatively explained by Coulomb scattering phase-space argument.
When two planar atomic membranes are placed within the van der Waals distance, the charge and heat transport across the interface are coupled by the rules of momentum conservation and structural commensurability, leading to outstanding thermoelectric properties. Here we show that an effective interlayer phonon drag determines the Seebeck coefficient (S) across the van der Waals gap formed in twisted bilayer graphene (tBLG). The cross-plane thermovoltage, which is non-monotonic in both temperature and density, is generated through scattering of electrons by the out-of-plane layer breathing (ZO/ZA2) phonon modes and differs dramatically from the expected Landauer-Buttiker formalism in conventional tunnel junctions. The tunability of the cross-plane Seebeck effect in van der Waals junctions may be valuable in creating a new genre of versatile thermoelectric systems with layered solids.
Using a novel structure, consisting of two, independently contacted graphene single layers separated by an ultra-thin dielectric, we experimentally measure the Coulomb drag of massless fermions in graphene. At temperatures higher than 50 K, the Coulomb drag follows a temperature and carrier density dependence consistent with the Fermi liquid regime. As the temperature is reduced, the Coulomb drag exhibits giant fluctuations with an increasing amplitude, thanks to the interplay between coherent transport in the graphene layer and interaction between the two layers.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا