Do you want to publish a course? Click here

Seebeck Coefficient of a Single van der Waals Junction in Twisted Bilayer Graphene

122   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

When two planar atomic membranes are placed within the van der Waals distance, the charge and heat transport across the interface are coupled by the rules of momentum conservation and structural commensurability, leading to outstanding thermoelectric properties. Here we show that an effective interlayer phonon drag determines the Seebeck coefficient (S) across the van der Waals gap formed in twisted bilayer graphene (tBLG). The cross-plane thermovoltage, which is non-monotonic in both temperature and density, is generated through scattering of electrons by the out-of-plane layer breathing (ZO/ZA2) phonon modes and differs dramatically from the expected Landauer-Buttiker formalism in conventional tunnel junctions. The tunability of the cross-plane Seebeck effect in van der Waals junctions may be valuable in creating a new genre of versatile thermoelectric systems with layered solids.



rate research

Read More

144 - H. Santos , A. Ayuela , L. Chico 2012
We study the interaction energy between two graphene nanoribbons by first principles calculations, including van der Waals interactions and spin polarization. For ultranarrow zigzag nanoribbons, the direct stacking is even more stable than Bernal, competing in energy for wider ribbons. This behavior is due to the magnetic interaction between edge states. We relate the reduction of the magnetization in zigzag nanoribbons with increasing ribbon width to the structural changes produced by the magnetic interaction, and show that when deposited on a substrate, zigzag bilayer ribbons remain magnetic for larger widths.
We show that a domain wall separating single layer graphene (SLG) and AA-stacked bilayer graphene (AA-BLG) can be used to generate highly collimated electron beams which can be steered by a magnetic field. Such system exists in two distinct configurations, namely, locally delaminated AA-BLG and terminated AA-BLG whose terminal edge-type can be either zigzag or armchair. We investigate the electron scattering using semi-classical dynamics and verify the results independently with wave-packed dynamics simulations. We find that the proposed system supports two distinct types of collimated beams that correspond to the lower and upper cones in AA-BLG. Our computational results also reveal that collimation is robust against the number of layers connected to AA-BLG and terminal edges.
When two superconductors are connected across a ferromagnet, the spin configuration of the transferred Cooper pairs can be modulated due to magnetic exchange interaction. The resulting supercurrent can reverse its sign across the Josephson junction (JJ) [1-4]. Here we demonstrate Josephson phase modulation in van der Waals heterostructures when Cooper pairs from superconducting NbSe$_2$ tunnel through atomically thin magnetic insulator (MI) Cr$_2$Ge$_2$Te$_6$. Employing a superconducting quantum interference device based on MI JJs, we probe a doubly degenerate non-trivial JJ phase ($phi$) originating from the magnetic barrier. This $phi$-phase JJ is formed by momentum conserving tunneling of Ising Cooper pairs [5] across magnetic domains in the Cr$_2$Ge$_2$Te$_6$ barrier. The doubly degenerate ground states in MI JJs provide a two-level quantum system that can be utilized as a new disipationless component for superconducting quantum devices, including phase batteries [6], memories [7,8], and quantum Ratchets [9,10].
Control of the interlayer twist angle in two-dimensional (2D) van der Waals (vdW) heterostructures enables one to engineer a quasiperiodic moire superlattice of tunable length scale. In twisted bilayer graphene (TBG), the simple moire superlattice band description suggests that the electronic band width can be tuned to be comparable to the vdW interlayer interaction at a magic angle, exhibiting strongly correlated behavior. However, the vdW interlayer interaction can also cause significant structural reconstruction at the interface by favoring interlayer commensurability, which competes with the intralayer lattice distortion. Here we report the atomic scale reconstruction in TBG and its effect on the electronic structure. We find a gradual transition from incommensurate moire structure to an array of commensurate domain structures as we decrease the twist angle across the characteristic crossover angle, $theta_c$ ~1deg. In the twist regime smaller than $theta_c$ where the atomic and electronic reconstruction become significant, a simple moire band description breaks down. Upon applying a transverse electric field, we observe electronic transport along the network of one-dimensional (1D) topological channels that surround the alternating triangular gapped domains, providing a new pathway to engineer the system with continuous tunability.
138 - Dingran Rui , Luzhao Sun , N. Kang 2020
We report on low-temperature transport study of a single layer graphene (SLG)-twisted bilayer graphene (tBLG) junction device. The SLG-tBLG junction in the device is grown by chemical vapor deposition and the device is fabricated in a Hall-bar configuration on Si/SiO$_2$ substrate. The longitudinal resistances across the SLG-tBLG junction (cross-junction resistances) on the two sides of the Hall bar and the Hall resistances of SLG and tBLG in the device are measured. In the quantum Hall regime, the measurements show that the measured cross-junction resistances exhibit a series of new quantized plateaus and the appearance of these resistance plateaus can be attributed to the presence of the well-defined edge-channel transport along the SLG-tBLG junction interface. The measurements also show that the difference between the cross-junction resistances measured on the two sides of the Hall-bar provides a sensitive measure to the edge channel transport characteristics in the two graphene layers that constitute the SLG-tBLG junction and to degeneracy lifting of the Landau levels in the tBLG layer. Temperature dependent measurements of the cross-junction resistance in the quantum Hall regime are also carried out and the influence of the transverse transport of the bulk Landau levels on the edge channel transport along the SLG-tBLG junction interface are extracted. These results enrich the understanding of the charge transport across interfaces in graphene hybrid structures and open up new opportunities for probing exotic quantum phenomena in graphene devices.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا