Do you want to publish a course? Click here

Topological Supersolidity of Dipolar Fermi Gases in a Spin-Dependent Optical Lattice

135   0   0.0 ( 0 )
 Added by Huanyu Wang
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate topological supersolidity of dipolar Fermi gases in a spin-dependent 2D optical lattice. Numerical results show that the topological supersolid states can be synthesized via the combination of topological superfluid states with the stripe order, where the topological superfluid states generated with dipolar interaction possess the $Delta_{x}+iDelta_{y}$ order, and it is of D class topological classification. By adjusting the ratio between hopping amplitude $t_{x}/t_{y}$ and interaction strength $U$ with dipole orientation $phi approx frac{pi}{4}$, the system will undergo phase transitions among the $p_{x}+ip_{y}$-wave topological superfluid state, the p-wave superfluid state, and the topological supersolid state. The topological supersolid state is proved to be stable by the positive sign of the inverse compressibility. We design an experimental protocol to realize the staggered next-next-nearest-neighbour hopping via the laser assisted tunneling technique, which is the key to synthesize topological supersolid states.



rate research

Read More

We calculate the mean-field phase diagram of a zero-temperature, binary Bose mixture on a square optical lattice, where one species possesses a non-negligible dipole moment. Remarkably, this system exhibits supersolidity for anomalously weak dipolar interaction strengths, which are readily accessible with current experimental capabilities. The supersolid phases are robust, in that they occupy large regions in the parameter space. Further, we identify a first-order quantum phase transition between supersolid and superfluid phases. Our results demonstrate the rich features of the dipolar Bose mixture, and suggest that this system is well-suited for exploring supersolidity in the experimental setting.
In this work we analyze the dynamical behavior of the collision between two clouds of fermionic atoms with opposite spin polarization. By means of the time-evolving block decimation (TEBD) numerical method, we simulate the collision of two one-dimensional clouds in a lattice. There is a symmetry in the collision behaviour between the attractive and repulsive interactions. We analyze the pair formation dynamics in the collision region, providing a quantitative analysis of the pair formation mechanism in terms of a simple two-site model.
The rotation of two-component Fermi gases and the subsequent appearance of vortices have been the subject of numerous experimental and theoretical studies. Recent experimental advances in hyperfine state-dependent potentials and highly degenerate heteronuclear Fermi gases suggest that it would be feasible to create component-dependent rotation potentials in future experiments. In this study we use an effective field theory for Fermi gases to consider the effects of rotating only one component of the Fermi gas. We find that the superfluid band gap in bulk exists up to higher rotation frequencies because the superfluid at rest, far away from the vortex, has to resist only half of the rotational effects. The vortex remains the energetically favorable state above a critical frequency but exhibits a larger core size.
We present a theory for the emergence of a supersolid state in a cigar-shaped dipolar quantum Bose gas. Our approach is based on a reduced three-dimensional (3D) theory, where the condensate wavefunction is decomposed into an axial field and a transverse part described variationally. This provides an accurate fully 3D description that is specific to the regime of current experiments and efficient to compute. We apply this theory to understand the phase diagram for a gas in an infinite tube potential. We find that the supersolid transition has continuous and discontinuous regions as the averaged density varies. We develop two simplified analytic models to characterize the phase diagram and elucidate the roles of quantum droplets and of the roton excitation.
This tutorial is a theoretical work, in which we study the physics of ultra-cold dipolar bosonic gases in optical lattices. Such gases consist of bosonic atoms or molecules that interact via dipolar forces, and that are cooled below the quantum degeneracy temperature, typically in the nK range. When such a degenerate quantum gas is loaded into an optical lattice produced by standing waves of laser light, new kinds of physical phenomena occur. These systems realize then extended Hubbard-type models, and can be brought to a strongly correlated regime. The physical properties of such gases, dominated by the long-range, anisotropic dipole-dipole interactions, are discussed using the mean-field approximations, and exact Quantum Monte Carlo techniques (the Worm algorithm).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا