No Arabic abstract
This tutorial is a theoretical work, in which we study the physics of ultra-cold dipolar bosonic gases in optical lattices. Such gases consist of bosonic atoms or molecules that interact via dipolar forces, and that are cooled below the quantum degeneracy temperature, typically in the nK range. When such a degenerate quantum gas is loaded into an optical lattice produced by standing waves of laser light, new kinds of physical phenomena occur. These systems realize then extended Hubbard-type models, and can be brought to a strongly correlated regime. The physical properties of such gases, dominated by the long-range, anisotropic dipole-dipole interactions, are discussed using the mean-field approximations, and exact Quantum Monte Carlo techniques (the Worm algorithm).
Over the last years the exciting developments in the field of ultracold atoms confined in optical lattices have led to numerous theoretical proposals devoted to the quantum simulation of problems e.g. known from condensed matter physics. Many of those ideas demand for experimental environments with non-cubic lattice geometries. In this paper we report on the implementation of a versatile three-beam lattice allowing for the generation of triangular as well as hexagonal optical lattices. As an important step the superfluid-Mott insulator (SF-MI) quantum phase transition has been observed and investigated in detail in this lattice geometry for the first time. In addition to this we study the physics of spinor Bose-Einstein condensates (BEC) in the presence of the triangular optical lattice potential, especially spin changing dynamics across the SF-MI transition. Our results suggest that below the SF-MI phase transition, a well-established mean-field model describes the observed data when renormalizing the spin-dependent interaction. Interestingly this opens new perspectives for a lattice driven tuning of a spin dynamics resonance occurring through the interplay of quadratic Zeeman effect and spin-dependent interaction. We finally discuss further lattice configurations which can be realized with our setup.
Since the discovery of topological insulators, many topological phases have been predicted and realized in a range of different systems, providing both fascinating physics and exciting opportunities for devices. And although new materials are being developed and explored all the time, the prospects for probing exotic topological phases would be greatly enhanced if they could be realized in systems that were easily tuned. The flexibility offered by ultracold atoms could provide such a platform. Here, we review the tools available for creating topological states using ultracold atoms in optical lattices, give an overview of the theoretical and experimental advances and provide an outlook towards realizing strongly correlated topological phases.
Motivated by recent realizations of spin-1 NaRb mixtures in the experiments, here we investigate heteronuclear magnetism in the Mott-insulating regime. Different from the identical mixtures where the boson (fermion) statistics only admits even (odd) parity states from angular momentum composition, for heteronuclear atoms in principle all angular momentum states are allowed, which can give rise to new magnetic phases. Various magnetic phases can be developed over these degenerate spaces, however, the concrete symmetry breaking phases depend not only on the degree of degeneracy, but also the competitions from many-body interactions. We unveil these rich phases using the bosonic dynamical mean-field theory approach. These phases are characterized by various orders, including spontaneous magnetization order, spin magnitude order, singlet pairing order and nematic order, which may coexist, especially in the regime with odd parity. Finally we address the possible parameter regimes for observing these spin-ordered Mott phases.
As the temperature of a many-body system approaches absolute zero, thermal fluctuations of observables cease and quantum fluctuations dominate. Competition between different energies, such as kinetic energy, interactions or thermodynamic potentials, can induce a quantum phase transition between distinct ground states. Near a continuous quantum phase transition, the many-body system is quantum critical, exhibiting scale invariant and universal collective behavior cite{Coleman05Nat, Sachdev99QPT}. Quantum criticality has been actively pursued in the study of a broad range of novel materials cite{vdMarel03Nat, Lohneysen07rmp, G08NatPhys, Sachdev08NatPhys}, and can invoke new insights beyond the Landau-Ginzburg-Wilson paradigm of critical phenomena cite{Senthil04prb}. It remains a challenging task, however, to directly and quantitatively verify predictions of quantum criticality in a clean and controlled system. Here we report the observation of quantum critical behavior in a two-dimensional Bose gas in optical lattices near the vacuum-to-superfluid quantum phase transition. Based on textit{in situ} density measurements, we observe universal scaling of the equation of state at sufficiently low temperatures, locate the quantum critical point, and determine the critical exponents. The universal scaling laws also allow determination of thermodynamic observables. In particular, we observe a finite entropy per particle in the critical regime, which only weakly depends on the atomic interaction. Our experiment provides a prototypical method to study quantum criticality with ultracold atoms, and prepares the essential tools for further study on quantum critical dynamics.
We consider dipolar bosons in two tubes of one-dimensional lattices, where the dipoles are aligned to be maximally repulsive and the particle filling fraction is the same in each tube. In the classical limit of zero inter-site hopping, the particles arrange themselves into an ordered crystal for any rational filling fraction, forming a complete devils staircase like in the single tube case. Turning on hopping within each tube then gives rise to a competition between the crystalline Mott phases and a liquid of defects or solitons. However, for the two-tube case, we find that solitons from different tubes can bind into pairs for certain topologies of the filling fraction. This provides an intriguing example of pairing that is purely driven by correlations close to a Mott insulator.