No Arabic abstract
Understanding the transfer of spin angular momentum is essential in modern magnetism research. A model case is the generation of magnons in magnetic insulators by heating an adjacent metal film. Here, we reveal the initial steps of this spin Seebeck effect with <27fs time resolution using terahertz spectroscopy on bilayers of ferrimagnetic yttrium-iron garnet and platinum. Upon exciting the metal with an infrared laser pulse, a spin Seebeck current $j_textrm{s}$ arises on the same ~100fs time scale on which the metal electrons thermalize. This observation highlights that efficient spin transfer critically relies on carrier multiplication and is driven by conduction electrons scattering off the metal-insulator interface. Analytical modeling shows that the electrons dynamics are almost instantaneously imprinted onto $j_textrm{s}$ because their spins have a correlation time of only ~4fs and deflect the ferrimagnetic moments without inertia. Applications in material characterization, interface probing, spin-noise spectroscopy and terahertz spin pumping emerge.
A new measurement technique for the spin Seebeck effect is presented, wherein the normal metal layer used for its detection is exploited simultaneously as a resistive heater and thermometer. We show how the various contributions to the measured total signal can be disentangled, allowing to extract the voltage signal solely caused by the spin Seebeck effect. To this end we performed measurements as a function of the external magnetic field strength and its orientation. We find that the effect scales linearly with the induced rise in temperature, as expected for the spin Seebeck effect.
Exciton Mott transition in Si is investigated by using terahertz time-domain spectroscopy. The excitonic correlation as manifested by the 1s-2p resonance is observed above the Mott density. The scattering rate of charge carriers is prominently enhanced at the proximity of Mott density, which is attributed to the non-vanishing exciton correlation in the metallic electron-hole plasma. Concomitantly, the signature of plasmon-exciton coupling is observed in the loss function spectra.
The generation and manipulation of carrier spin polarization in semiconductors solely by electric fields has garnered significant attention as both an interesting manifestation of spin-orbit physics as well as a valuable capability for potential spintronics devices. One realization of these spin-orbit phenomena, the spin Hall effect (SHE), has been studied as a means of all-electrical spin current generation and spin separation in both semiconductor and metallic systems. Previous measurements of the spin Hall effect have focused on steady-state generation and time-averaged detection, without directly addressing the accumulation dynamics on the timescale of the spin coherence time. Here, we demonstrate time-resolved measurement of the dynamics of spin accumulation generated by the extrinsic spin Hall effect in a doped GaAs semiconductor channel. Using electrically-pumped time-resolved Kerr rotation, we image the accumulation, precession, and decay dynamics near the channel boundary with spatial and temporal resolution and identify multiple evolution time constants. We model these processes using time-dependent diffusion analysis utilizing both exact and numerical solution techniques and find that the underlying physical spin coherence time differs from the dynamical rates of spin accumulation and decay observed near the sample edges.
We report time-resolved magneto-optic Kerr effect measurements of the longitudinal spin Seebeck effect driven by an interfacial temperature difference between itinerant electrons and magnons. The measured time-evolution of spin accumulation induced by laser-excitation indicates transfer of angular momentum across Au/Y$_3$Fe$_5$O$_{12}$ and Cu/Y$_3$Fe$_5$O$_{12}$ interfaces on a picosecond time-scale. The product of spin-mixing conductance and interfacial spin Seebeck coefficient determined is of the order of $10^8$ A m$^{-2}$ K$^{-1}$.
The understanding of how the sub-nanoscale exchange interaction evolves in macroscale correlations and ordered phases of matter, such as magnetism and superconductivity, requires to bridge the quantum and classical worlds. This monumental challenge has so far only been achieved for systems close to their thermodynamical equilibrium. Here we follow in real time the ultrafast dynamics of the macroscale magnetic order parameter triggered by the impulsive optical generation of spin excitations with the shortest possible nanometer-wavelength and femtosecond-period. Our experiments also disclose a possibility for the coherent control of these femtosecond nanomagnons, which are defined by the exchange energy. These findings open up novel opportunities for fundamental research on the role of short-wavelength spin excitations in magnetism and high-temperature superconductivity, since they provide a macroscopic probe of the femtosecond dynamics of sub-nanometer spin-spin correlations and, ultimately, of the exchange energy. With this approach it becomes possible to trace the dynamics of such short-range magnetic correlations for instance during phase transitions. Moreover, our work suggests that nanospintronics and nanomagnonics can employ phase-controllable spin waves with frequencies in the 20 THz domain.