We report time-resolved magneto-optic Kerr effect measurements of the longitudinal spin Seebeck effect driven by an interfacial temperature difference between itinerant electrons and magnons. The measured time-evolution of spin accumulation induced by laser-excitation indicates transfer of angular momentum across Au/Y$_3$Fe$_5$O$_{12}$ and Cu/Y$_3$Fe$_5$O$_{12}$ interfaces on a picosecond time-scale. The product of spin-mixing conductance and interfacial spin Seebeck coefficient determined is of the order of $10^8$ A m$^{-2}$ K$^{-1}$.
A new measurement technique for the spin Seebeck effect is presented, wherein the normal metal layer used for its detection is exploited simultaneously as a resistive heater and thermometer. We show how the various contributions to the measured total signal can be disentangled, allowing to extract the voltage signal solely caused by the spin Seebeck effect. To this end we performed measurements as a function of the external magnetic field strength and its orientation. We find that the effect scales linearly with the induced rise in temperature, as expected for the spin Seebeck effect.
We theoretically propose a nonreciprocal spin Seebeck effect, i.e., nonreciprocal spin transport generated by a temperature gradient, in antiferromagnetic insulators with broken inversion symmetry. We find that nonreciprocity in antiferromagnets has rich properties not expected in ferromagnets. In particular, we show that polar antiferromagnets, in which the crystal lacks the spatial inversion symmetry, exhibit perfect nonreciprocity --- one-way spin current flow irrespective of the direction of the temperature gradient. We also show that nonpolar centrosymmetric crystals can exhibit nonreciprocity when a magnetic order breaks the inversion symmetry, and in this case, the direction of the nonreciprocal flow can be controlled by reversing the magnetic domain. As their representatives, we calculate the nonreciprocal spin Seebeck voltages for the polar antiferromagnet $alpha$-Cu$_2$V$_2$O$_7$ and the honeycomb antiferromagnet MnPS$_3$, while varying temperature and magnetic field.
The interplay between spin and heat currents at magnetic insulator|nonmagnetic metal interfaces has been a subject of much scrutiny because of both fundamental physics and the promise for technological applications. While ferrimagnetic and, more recently, antiferromagnetic systems have been extensively investigated, a theory generalizing the heat-to-spin interconversion in noncollinear magnets is still lacking. Here, we establish a general framework for thermally-driven spin transport at the interface between a noncollinear magnet and a normal metal. Modeling the interfacial coupling between localized and itinerant magnetic moments via an exchange Hamiltonian, we derive an expression for the spin current, driven by a temperature difference, for an arbitrary noncollinear magnetic order. Our theory reproduces previously obtained results for ferromagnetic and antiferromagnet systems.
The angular dependence of the thermal transport in insulating or conducting ferromagnets is derived on the basis of the Onsager reciprocity relations applied to a magnetic system. It is shown that the angular dependence of the temperature gradient takes the same form as that of the anisotropic magnetoresistance, including anomalous and planar Hall contributions. The measured thermocouple generated between the extremities of the non-magnetic electrode in thermal contact to the ferromagnet follows this same angular dependence. The sign and amplitude of the magneto-voltaic signal is controlled by the difference of the Seebeck coefficients of the thermocouple.
We present measurements of the spin Seebeck effect (SSE) by a technique that combines alternating currents (AC) and direct currents (DC). The method is applied to a ferrimagnetic insulator/heavy metal bilayer, Y$_3$Fe$_5$O$_{12}$(YIG)/Pt. Typically, SSE measurements use an AC current to produce an alternating temperature gradient and measure the voltage generated by the inverse spin-Hall effect in the heavy metal at twice the AC frequency. Here we show that when Joule heating is associated with AC and DC bias currents, the SSE response occurs at the frequency of the AC current drive and can be larger than the second harmonic SSE response. We compare the first and second harmonic responses and show that they are consistent with the SSE. The field dependence of the voltage response is used to characterize the damping-like and field-like torques. This method can be used to explore nonlinear thermoelectric effects and spin dynamics induced by temperature gradients.