Do you want to publish a course? Click here

Ultrahigh capacitive energy storage in highly oriented BaZr(x)Ti(1-x)O3 thin films prepared by pulsed laser deposition

68   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report structural, optical, temperature and frequency dependent dielectric, and energy storage properties of pulsed laser deposited (100) highly textured BaZr(x)Ti(1-x)O3 (x = 0.3, 0.4 and 0.5) relaxor ferroelectric thin films on La0.7Sr0.3MnO3/MgO substrates which make this compound as a potential lead-free capacitive energy storage material for scalable electronic devices. A high dielectric constant of ~1400 - 3500 and a low dielectric loss of <0.025 were achieved at 10 kHz for all three compositions at ambient conditions. Ultrahigh stored and recoverable electrostatic energy densities as high as 214 +/- 1 and 156 +/- 1 J/cm3, respectively, were demonstrated at a sustained high electric field of ~3 MV/cm with an efficiency of 72.8 +/- 0.6 % in optimum 30% Zr substituted BaTiO3 composition.



rate research

Read More

308 - Valerie Brien 2020
The preparation in thin film form of the known icosahedral phase in Ti-Ni-Zr bulk alloys has been investigated as a function of substrate temperature. Films were deposited by Pulsed Laser Deposition on sapphire substrates at temperatures ranging from room temperature to 350$^circ$C. Morphological and structural modifications have been followed by grazing incidence and $theta$-2$theta$ X-ray diffraction, transmission electron diffraction and imaging. Chemical composition has been analysed by Electron Probe Micro-Analysis. The in-depth variation of composition has been studied by Secondary Neutral Mass Spectroscopy. We show that Pulsed Laser Deposition at 275$^circ$C makes the formation of a 1 m thick film of Ti-Ni-Zr quasicrystalline textured nanocrystallites possible.
Micron-thick boron films have been deposited by Pulsed Laser Deposition in vacuum on several substrates at room temperature. The use of high energy pulses (>700 mJ) results in the deposition of smooth coatings with low oxygen uptake even at base pressures of 10$^{-4}$ - 10$^{-3}$ Pa. A detailed structural analysis, by X-Ray Diffraction and Raman, allowed to assess the amorphous nature of the deposited films as well as to determine the base pressure that prevents boron oxide formation. In addition the crystallization dynamics has been characterized showing that film crystallinity already improves at relatively low temperatures (800 {deg}C). Elastic properties of the boron films have been determined by Brillouin spectroscopy. Finally, micro-hardness tests have been used to explore cohesion and hardness of B films deposited on aluminum, silicon and alumina. The reported deposition strategy allows the growth of reliable boron coatings paving the way for their use in many technology fields.
Possible existence of topologically protected surface in samarium hexaboride has created a strong need for investigations allowing to distinguish between properties coming from the surface states and those originating in the (remaining) bulk. Studies of SmB6 thin films represent a favorable approach allowing well defined variations of the bulk volume that is not affected by surface states. Moreover, thin films are highly desirable for potential technology applications. However, the growth of SmB6 thin films is accompanied by technology problems, which are typically associated with maintaining the correct stoichiometry of samarium and boron. Here we present feasibility study of SmB6 thin film synthesis by pulsed laser deposition (PLD) from a single stoichiometric SmB6 target. As proved by Rutherford Backscattering Spectrometry (RBS), we succeeded to obtain the same ratio of samarium and boron in the films as that in the target. Thin films revealing characteristic electrical properties of (crystalline) SmB6 were successfully deposited on MgO, sapphire, and glass-ceramics substrates, when the substrates were kept at temperature of 600$^circ$ C during the deposition. Performed electrical resistance studies have revealed that bulk properties of the films are only slightly affected by the substrate. Our results indicate that PLD is a suitable method for complex and intensive research of SmB6 and similar systems.
Epitaxial titanium diboride thin films have been deposited on sapphire substrates by Pulsed Laser Ablation technique. Structural properties of the films have been studied during the growth by Reflection High Energy Electron Diffraction (RHEED) and ex-situ by means of X-ray diffraction techniques; both kinds of measurements indicate a good crystallographic orientation of the TiB2 film both in plane and along the c axis. A flat surface has been observed by Atomic Force Microscopy imaging. Electrical resistivity at room temperature resulted to be five times higher than the value reported for single crystals. The films resulted to be also very stable at high temperature, which is very promising for using this material as a buffer layer in the growth of magnesium diboride thin films.
Control of thin film stoichiometry is of primary relevance to achieve desired functionality. Pulsed laser deposition ablating from binary-oxide targets (sequential deposition) can be applied to precisely control the film composition, offsetting the importance of growth conditions on the film stoichiometry. In this work, we demonstrate that the cation stoichiometry of SrTiO$_3$ thin films can be finely tuned by sequential deposition from SrO and TiO$_2$ targets. Homoepitaxial SrTiO$_3$ films were deposited at different substrate temperatures and Ti/Sr pulse ratios, allowing the establishment of a growth window for stoichiometric SrTiO$_3$. The growth kinetics and nucleation processes were studied by reflection high-energy electron diffraction and atomic force microscopy, providing information about the growth mode and the degree of off-stoichiometry. At the optimal (stoichiometric) growth conditions, films exhibit atomically flat surfaces, whereas off-stoichiometry is accommodated by crystal defects, 3D islands and/or surface precipitates depending on the substrate temperature and the excess cation. This technique opens the way to precisely control stoichiometry and doping of oxide thin films.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا