Do you want to publish a course? Click here

Pseudogap Anderson impurity model out of equilibrium: A master equation tensor network approach

130   0   0.0 ( 0 )
 Added by Enrico Arrigoni
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study equilibrium and nonequilibrium properties of the single-impurity Anderson model with a power-law pseudogap in the density of states. In equilibrium, the model is known to display a quantum phase transition from a generalized Kondo to a local moment phase. In the present work, we focus on the extension of these phases beyond equilibrium, i.e. under the influence of a bias voltage. Within the auxiliary master equation approach combined with a scheme based on matrix product states (MPS) we are able to directly address the current-carrying steady state. Starting with the equilibrium situation, we first corroborate our results by comparing with a direct numerical evaluation of ground state spectral properties of the system by MPS. Here, a scheme to locate the phase boundary by extrapolating the power-law exponent of the self energy produces a very good agreement with previous results obtained by the numerical renormalization group. Our nonequilibrium study as a function of the applied bias voltage is then carried out for two points on either side of the phase boundary. In the Kondo regime the resonance in the spectral function is splitted as a function of the increasing bias voltage. The local moment regime, instead, displays a dip in the spectrum near the position of the chemical potentials. Similar features are observed in the corresponding self energies. The Kondo split peaks approximately obey a power-law behavior as a function of frequency, whose exponents depend only slightly on voltage. Finally, the differential conductance in the Kondo regime shows a peculiar maximum at finite voltages, whose height, however, is below the accuracy level.



rate research

Read More

143 - A. A. Aligia 2017
I present briefly some facts about nonequilibrium renormalized perturbation theory, correcting recent misleading statements in [E. Mu~noz, F. Zamani, L. Merker, T. A. Costi, and S. Kirchner, Journal of Physics: Conf. Series 807, 092001 (2017)], and discuss some results of this work using rSPT at equilibrium.
141 - A. Dirks , S. Schmitt , J.E. Han 2013
We use different numerical approaches to calculate the double occupancy and mag- netic susceptibility as a function of a bias voltage in an Anderson impurity model. Specifically, we compare results from the Matsubara-voltage quantum Monte-Carlo approach (MV-QMC), the scattering-states numerical renormalization group (SNRG), and real-time quantum Monte-Carlo (RT-QMC), covering Coulomb repulsions ranging from the weak-coupling well into the strong- coupling regime. We observe a distinctly different behavior of the double occupancy and the magnetic response. The former measures charge fluctuations and thus only indirectly exhibits the Kondo scale, while the latter exhibits structures on the scale of the equilibrium Kondo tempera- ture. The Matsubara-voltage approach and the scattering-states numerical renormalization group yield consistent values for the magnetic susceptibility in the Kondo limit. On the other hand, all three numerical methods produce different results for the behavior of charge fluctuations in strongly interacting dots out of equilibrium.
We show how the density-matrix numerical renormalization group (DM-NRG) method can be used in combination with non-Abelian symmetries such as SU(N), where the decomposition of the direct product of two irreducible representations requires the use of a so-called outer multiplicity label. We apply this scheme to the SU(3) symmetrical Anderson model, for which we analyze the finite size spectrum, determine local fermionic, spin, superconducting, and trion spectral functions, and also compute the temperature dependence of the conductance. Our calculations reveal a rich Fermi liquid structure.
We study the single-impurity Anderson model out of equilibrium under the influence of a bias voltage $phi$ and a magnetic field $B$. We investigate the interplay between the shift ($omega_B$) of the Kondo peak in the spin-resolved density of states (DOS) and the one ($phi_B$) of the conductance anomaly. In agreement with experiments and previous theoretical calculations we find that, while the latter displays a rather linear behavior with an almost constant slope as a function of $B$ down to the Kondo scale, the DOS shift first features a slower increase reaching the same behavior as $phi_B$ only for $|g| mu_B B gg k_B T_K$. Our auxiliary master equation approach yields highly accurate nonequilibrium results for the DOS and for the conductance all the way from within the Kondo up to the charge fluctuation regime, showing excellent agreement with a recently introduced scheme based on a combination of numerical renormalization group with time-dependent density matrix renormalization group.
We theoretically investigate the non-equilibrium quantum phase transition in a generic setup: the pseudogap Kondo model where a quantum dot couples to two-left (L) and right (R)-voltage-biased fermionic leads with power-law density of states (DOS) with respect to their Fermi levels {mu}_L/R, {rho}_c,L(R) ({omega}) propto |{omega} - {mu}_L(R) |r, and 0 < r < 1. In equilibrium (zero bias voltage) and for 0 < r < 1/2, with increasing Kondo correlations, in the presence of particle-hole symmetry this model exhibits a quantum phase transition from a unscreened local moment (LM) phase to the Kondo phase. Via a controlled frequency-dependent renormalization group (RG) approach, we compute analytically and numerically the non-equilibrium conductance, conduction electron T-matrix and local spin susceptibility at finite bias voltages near criticality. The current-induced decoherence shows distinct nonequilibrium scaling, leading to new universal non-equilibrium quantum critical behaviors in the above observables. Relevance of our results for the experiments is discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا