We describe an all-optical lithography process that can be used to make electrical contact to atomic-precision donor devices made in silicon using scanning tunneling microscopy (STM). This is accomplished by implementing a cleaning procedure in the STM that allows the integration of metal alignment marks and ion-implanted contacts at the wafer level. Low-temperature transport measurements of a patterned device establish the viability of the process.
Molecules with versatile functionalities and well-defined structures, can serve as building blocks for extreme nanoscale devices. This requires their precise integration into functional heterojunctions, most commonly in the form of metal-molecule-metal architectures. Structural damage and nonuniformities caused by current fabrication techniques, however, limit their effective incorporation. Here, we present a hybrid fabrication approach enabling uniform molecular gaps. Template-stripped lithographically-patterned gold electrodes with sub-nanometer roughness are used as the bottom contacts upon which the molecular layer is formed through self-assembly. The top contacts are assembled using dielectrophoretic trapping of colloidal gold nanorods, resulting in uniform sub-5 nm junctions. In these electrically-active designs, we further explore the possibility of mechanical tunability. The presence of molecules may help control sub-nanometer mechanical modulation which is conventionally difficult to achieve due to instabilities caused by surface adhesive forces. Our approach is versatile, providing a platform to develop and study active molecular gaps towards functional nanodevices.
Development of memory devices with ultimate performance has played a key role in innovation of modern electronics. As a mainstream technology nonvolatile memory devices have manifested high capacity and mechanical reliability, however current major bottlenecks include low extinction ratio and slow operational speed. Although substantial effort has been employed to improve their performance, a typical hundreds of micro- or even milli- second write time remains a few orders of magnitude longer than their volatile counterparts. We have demonstrated nonvolatile, floating-gate memory devices based on van der Waals heterostructures with atomically sharp interfaces between different functional elements, and achieved ultrahigh-speed programming/erasing operations verging on an ultimate theoretical limit of nanoseconds with extinction ratio up to 10^10. This extraordinary performance has allowed new device capabilities such as multi-bit storage, thus opening up unforeseen applications in the realm of modern nanoelectronics and offering future fabrication guidelines for device scale-up.
The microelectronics industry is pushing the fundamental limit on the physical size of individual elements to produce faster and more powerful integrated chips. These chips have nanoscale features that dissipate power resulting in nanoscale hotspots leading to device failures. To understand the reliability impact of the hotspots, the device needs to be tested under the actual operating conditions. Therefore, the development of high-resolution thermometry techniques is required to understand the heat dissipation processes during the device operation. Recently, several thermometry techniques have been proposed,such as radiation thermometry, thermocouple based contact thermometry, scanning thermal microscopy (SThM), scanning transmission electron microscopy (STEM) and transition based threshold thermometers. However, most of these techniques have limitations including the need for extensive calibration, perturbation of the actual device temperature, low throughput, and the use of ultra-high vacuum. Here, we present a facile technique, which uses a thin film contact thermometer based on the phase change material Ge2Sb2Te5, to precisely map thermal contours from the nanoscale to the microscale. Ge2Sb2Te5 undergoes a crystalline transition at Tg with large changes in its electric conductivity, optical reflectivity and density. Using this approach, we map the surface temperature of a nanowire and an embedded micro-heater on the same chip where the scales of the temperature contours differ by three orders of magnitude. The spatial resolution can be as high as 20 nanometers thanks to the continuous nature of the thin film.
The construction of atomically-precise carbon nanostructures holds promise for developing novel materials for scientific study and nanotechnology applications. Here we show that graphene origami is an efficient way to convert graphene into atomically-precise, complex, and novel nanostructures. By scanning-tunneling-microscope manipulation at low temperature, we repeatedly fold and unfold graphene nanoislands (GNIs) along arbitrarily chosen direction. A bilayer graphene stack featuring a tunable twist angle and a tubular edge connection between the layers are formed. Folding single-crystal GNIs creates tubular edges with specified chirality and one-dimensional electronic features similar to those of carbon nanotubes, while folding bi-crystal GNIs creates well-defined intramolecular junctions. Both origami structural models and electronic band structures were computed to complement analysis of the experimental results. The present atomically-precise graphene origami provides a platform for constructing novel carbon nanostructures with engineered quantum properties and ultimately quantum machines.
Light with light control of surface plasmon polaritons is theoretically demonstrated. A barely simple and compact source of these waves consists in a finite number of slits (evenly spaced) perforating a metal film. The system scatters electromagnetic fields in one side of the metal film when it is illuminated from the opposite side by a polarized light source. High intensity light sources moreover efficiently generate light at second harmonic and higher frequencies in the metal led by optical nonlinearities. It is shown how the mixing of fields scattered by the slits from a weak beam at $lambda$ wavelength, with the second harmonic fields generated by a high intensity $2 lambda$ beam, creates a destructive interference of surface plasmons in one of the two possible directions of emission from the slits, while these are enhanced along the opposite direction. The unidirectional launching of surface plasmons is due to the different properties of symmetry at $lambda$ whether they are linearly or nonlinearly generated. It is envisaged a nanodevice which might allow sending digital information codified in the surface plasmon field or be used to build ultra-narrow bandwidth surface plasmon frequency combs.
Daniel R. Ward
,Michael T. Marshall
,DeAnna M. Campbell
.
(2017)
.
"All-optical lithography process for contacting atomically-precise devices"
.
Shashank Misra
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا