Do you want to publish a course? Click here

Observation of a phononic quadrupole topological insulator

201   0   0.0 ( 0 )
 Added by Valerio Peri
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The modern theory of charge polarization in solids is based on a generalization of Berrys phase. Its possible quantization lies at the heart of our understanding of all systems with topological band structures that were discovered over the last decades. While based on the concept of the charge polarization, the same theory can be used as an elegant tool to characterize the Bloch bands of neutral bosonic systems such as photonic or phononic crystals. Recently, the theory of this quantized polarization was extended from the dipole- to higher multipole-moments. In particular, a two-dimensional quantized quadrupole insulator is predicted to have gapped yet topological one-dimensional edge-modes, which in turn stabilize zero-dimensional in-gap corner states. However, such a state of matter has not been observed experimentally. Here, we provide the first measurements of a phononic quadrupole insulator. We experimentally characterize the bulk, edge, and corner physics of a mechanical metamaterial and find the predicted gapped edge and in-gap corner states. We further corroborate our findings by comparing the mechanical properties of a topologically non-trivial system to samples in other phases predicted by the quadrupole theory. From an application point of view, these topological corner states are an important stepping stone on the way to topologically protected wave-guides in higher dimensions and thereby open a new design path for metamaterials.



rate research

Read More

We performed broadband optical transmission measurements of Bi2Se3 and In-doped Bi(1-x)In(x)2Se3 thin films, where in the latter the spin-orbit coupling (SOC) strength can be tuned by introducing In. Drude and interband transitions exhibit In-dependent changes that are consistent with evolution from metallic (x=0) to insulating (x=1) nature of the end compounds. Most notably, an optical absorption peak located at hw=1eV in Bi2Se3 is completely quenched at x=0.06, the critical concentration where the phase transition from TI into non-TI takes place. For this x, the surface state (SS) is vanished from the band structure as well. The correlation between the 1eV optical peak and the SS in the x-dependences suggests that the peak is associated with the SS. We further show that when Bi2Se3 is electrically gated, the 1eV-peak becomes stronger(weaker) when electron is depleted from (accumulated into) the SS. These observations combined together demonstrate that under the hw=1eV illumination electron is excited from a bulk band into the topological surface band of Bi2Se3. The optical population of surface band is of significant importance not only for fundamental study but also for TI-based optoelectronic device application.
A topological insulator (TI) interfaced with a magnetic insulator (MI) may host an anomalous Hall effect (AHE), a quantum AHE, and a topological Hall effect (THE). Recent studies, however, suggest that coexisting magnetic phases in TI/MI heterostructures may result in an AHE-associated response that resembles a THE but in fact is not. This article reports a genuine THE in a TI/MI structure that has only one magnetic phase. The structure shows a THE in the temperature range of T=2-3 K and an AHE at T=80-300 K. Over T=3-80 K, the two effects coexist but show opposite temperature dependencies. Control measurements, calculations, and simulations together suggest that the observed THE originates from skyrmions, rather than the coexistence of two AHE responses. The skyrmions are formed due to an interfacial DMI interaction. The DMI strength estimated is substantially higher than that in heavy metal-based systems.
When the crystalline symmetries that protect a higher-order topological phase are not preserved at the boundaries of the sample, gapless hinge modes or in-gap corner states cannot be stabilized. Therefore, careful engineering of the sample termination is required. Similarly, magnetic textures, whose quantum fluctuations determine the supported magnonic excitations, tend to relax to new configurations that may also break crystalline symmetries when boundaries are introduced. Here we uncover that antiskyrmion crystals provide an experimentally accessible platform to realize a magnonic topological quadrupole insulator, whose hallmark signature are robust magnonic corner states. Furthermore, we show that tuning an applied magnetic field can trigger the self-assembly of antiskyrmions carrying a fractional topological charge along the sample edges. Crucially, these fractional antiskyrmions restore the symmetries needed to enforce the emergence of the magnonic corner states. Using the machinery of nested Wilson loops, adapted to magnonic systems supported by noncollinear magnetic textures, we demonstrate the quantization of the bulk quadrupole moment, edge dipole moments, and corner charges.
The discovery of topological quantum states marks a new chapter in both condensed matter physics and materials sciences. By analogy to spin electronic system, topological concepts have been extended into phonons, boosting the birth of topological phononics (TPs). Here, we present a high-throughput screening and data-driven approach to compute and evaluate TPs among over 10,000 materials. We have clarified 5014 TP materials and classified them into single Weyl, high degenerate Weyl, and nodal-line (ring) TPs. Among them, three representative cases of TPs have been discussed in detail. Furthermore, we suggest 322 TP materials with potential clean nontrivial surface states, which are favorable for experimental characterizations. This work significantly increases the current library of TP materials, which enables an in-depth investigation of their structure-property relations and opens new avenues for future device design related to TPs.
128 - Y. S. Hou , , R. Q. Wu 2018
We propose to use ferromagnetic insulator MnBi2Se4/Bi2Se3/antiferromagnetic insulator Mn2Bi2Se5 heterostructures for the realization of the axion insulator state. Importantly, the axion insulator state in such heterostructures only depends on the magnetization of the ferromagnetic insulator and hence can be observed in a wide range of external magnetic field. Using density functional calculations and model Hamiltonian simulations, we find that the top and bottom surfaces have opposite half-quantum Hall conductance, with a sizable global spin gap of 5.1 meV opened for the topological surface states of Bi2Se3. Our work provides a new strategy for the search of axion insulators by using van der Waals antiferromagnetic insulators along with three-dimensional topological insulators.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا