No Arabic abstract
When the crystalline symmetries that protect a higher-order topological phase are not preserved at the boundaries of the sample, gapless hinge modes or in-gap corner states cannot be stabilized. Therefore, careful engineering of the sample termination is required. Similarly, magnetic textures, whose quantum fluctuations determine the supported magnonic excitations, tend to relax to new configurations that may also break crystalline symmetries when boundaries are introduced. Here we uncover that antiskyrmion crystals provide an experimentally accessible platform to realize a magnonic topological quadrupole insulator, whose hallmark signature are robust magnonic corner states. Furthermore, we show that tuning an applied magnetic field can trigger the self-assembly of antiskyrmions carrying a fractional topological charge along the sample edges. Crucially, these fractional antiskyrmions restore the symmetries needed to enforce the emergence of the magnonic corner states. Using the machinery of nested Wilson loops, adapted to magnonic systems supported by noncollinear magnetic textures, we demonstrate the quantization of the bulk quadrupole moment, edge dipole moments, and corner charges.
Quadrupole topological phases, exhibiting protected boundary states that are themselves topological insulators of lower dimensions, have recently been of great interest. Extensions of these ideas from current tight binding models to continuum theories for realistic materials require the identification of quantized invariants describing the bulk quadrupole order. Here we identify the analog of quadrupole order in Maxwells equations for a photonic crystal (PhC) and identify quadrupole topological photonic crystals formed through a band inversion process. Unlike prior studies relying on threaded flux, our quadrupole moment is quantized purely by crystalline symmetries, which we confirm using three independent methods: analysis of symmetry eigenvalues, numerical calculations of the nested Wannier bands, and the expectation value of the quadrupole operator. Furthermore, through the bulk-edge correspondence of Wannier bands, we reveal the boundary manifestations of nontrivial quadrupole phases as quantized polarizations at edges and bound states at corners. Finally, we relate the nontrivial corner states to the emergent phenomena of quantized fractional corner charges and a filling anomaly as first predicted in electronic systems. Our work paves the way to further explore higher-order topological phases in nanophotonic systems and our method of inducing quadrupole phase transitions is also applicable to other wave systems, such as electrons, phonons and polaritons.
The discovery of quadrupole topology opens a new horizon in the study of topological phenomena. However, the existing experimental realizations of quadrupole topological insulators in symmorphic lattices with $pi$-fluxes often break the protective mirror symmetry. Here, we present a theory for anomalous quadrupole topological insulators in nonsymmorphic crystals without flux, using 2D sonic crystals with $p4gm$ and $p2gg$ symmetry groups as concrete examples. We reveal that the anomalous quadrupole topology is protected by two orthogonal glide symmetries in square or rectangular lattices. The distinctive features of the anomalous quadrupole topological insulators include: (i) minimal four bands below the topological band gap, (ii) nondegenerate, gapped Wannier bands and special Wannier sectors with gapped composite Wannier bands, (iii) quantized Wannier band polarizations in these Wannier sectors. Remarkably, the protective glide symmetries are well-preserved in the sonic-crystal realizations where higher-order topological transitions can be triggered by symmetry or geometry engineering.
The modern theory of charge polarization in solids is based on a generalization of Berrys phase. Its possible quantization lies at the heart of our understanding of all systems with topological band structures that were discovered over the last decades. While based on the concept of the charge polarization, the same theory can be used as an elegant tool to characterize the Bloch bands of neutral bosonic systems such as photonic or phononic crystals. Recently, the theory of this quantized polarization was extended from the dipole- to higher multipole-moments. In particular, a two-dimensional quantized quadrupole insulator is predicted to have gapped yet topological one-dimensional edge-modes, which in turn stabilize zero-dimensional in-gap corner states. However, such a state of matter has not been observed experimentally. Here, we provide the first measurements of a phononic quadrupole insulator. We experimentally characterize the bulk, edge, and corner physics of a mechanical metamaterial and find the predicted gapped edge and in-gap corner states. We further corroborate our findings by comparing the mechanical properties of a topologically non-trivial system to samples in other phases predicted by the quadrupole theory. From an application point of view, these topological corner states are an important stepping stone on the way to topologically protected wave-guides in higher dimensions and thereby open a new design path for metamaterials.
Three-dimensional (3D) topological insulators (TIs) are new forms of quantum matter that are characterized by their insulating bulk state and exotic metallic surface state, which hosts helical Dirac fermions1-2. Very recently, BiTeCl, one of the polar semiconductors, has been discovered by angle-resolved photoemission spectroscopy to be the first strong inversion asymmetric topological insulator (SIATI). In contrast to the previously discovered 3D TIs with inversion symmetry, the SIATI are expected to exhibit novel topological phenomena, including crystalline-surface-dependent topological surface states, intrinsic topological p-n junctions, and pyroelectric and topological magneto-electric effects3. Here, we report the first transport evidence for the robust topological surface state in the SIATI BiTeCl via observation of Shubnikov-de Haas (SdH) oscillations, which exhibit the 2D nature of the Fermi surface and pi Berry phase. The n = 1 Landau quantization of the topological surface state is observed at B . 12 T without gating, and the Fermi level is only 58.8 meV above the Dirac point, which gives rise to small effective mass, 0.055me, and quite large mobility, 4490 cm2s-1. Our findings will pave the way for future transport exploration of other new topological phenomena and potential applications for strong inversion asymmetric topological insulators.
Achieving control over magnon spin currents in insulating magnets - where dissipation due to Joule heating is highly suppressed - is an active area of research that could lead to energy-efficient spintronics applications. However, magnon spin currents supported by conventional systems with uniform magnetic order have proven hard to control. An alternative approach that relies on topologically protected magnonic edge states of spatially periodic magnetic textures has recently emerged. A prime example of such textures is the ferromagnetic skyrmion crystal which hosts chiral edge states providing a platform for magnon spin currents. Here, we show, for the first time, an external magnetic field can drive a topological phase transition in the spin wave spectrum of a ferromagnetic skyrmion crystal. The topological phase transition is signaled by the closing of a low-energy bulk magnon gap at a critical field. In the topological phase, below the critical field, two topologically protected chiral magnonic edge states lie within this gap, but they unravel in the trivial phase, above the critical field. Remarkably, the topological phase transition involves an inversion of two magnon bands that at the $Gamma$ point correspond to the breathing and anticlockwise modes of the skyrmions in the crystal. Our findings suggest that an external magnetic field could be used as a knob to switch on and off magnon spin currents carried by topologically protected chiral magnonic edge states.