Do you want to publish a course? Click here

Renormalization Group Flow of the Higgs Potential

114   0   0.0 ( 0 )
 Added by Holger Gies
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We summarize results for local and global properties of the effective potential for the Higgs boson obtained from the functional renormalization group, which allows to describe the effective potential as a function of both scalar field amplitude and RG scale. This sheds light onto the limitations of standard estimates which rely on the identification of the two scales and helps clarifying the origin of a possible property of meta-stability of the Higgs potential. We demonstrate that the inclusion of higher-dimensional operators induced by an underlying theory at a high scale (GUT or Planck scale) can relax the conventional lower bound on the Higgs mass derived from the criterion of absolute stability.



rate research

Read More

We introduce a systematic approach for the resummation of perturbative series which involve large logarithms not only due to large invariant mass ratios but large rapidities as well. Series of this form can appear in a variety of gauge theory observables. The formalism is utilized to calculate the jet broadening event shape in a systematic fashion to next to leading logarithmic order. An operator definition of the factorized cross section as well as a closed form of the next-to leading log cross section are presented. The result agrees with the data to within errors.
The gradient flow bears a close resemblance to the coarse graining, the guiding principle of the renormalization group (RG). In the case of scalar field theory, a precise connection has been made between the gradient flow and the RG flow of the Wilson action in the exact renormalization group (ERG) formalism. By imitating the structure of this connection, we propose an ERG differential equation that preserves manifest gauge invariance in Yang--Mills theory. Our construction in continuum theory can be extended to lattice gauge theory.
We present results for in-medium spectral functions obtained within the Functional Renormalization Group framework. The analytic continuation from imaginary to real time is performed in a well-defined way on the level of the flow equations. Based on this recently developed method, results for the sigma and the pion spectral function for the quark-meson model are shown at finite temperature, finite quark-chemical potential and finite spatial momentum. It is shown how these spectral function become degenreate at high temperatures due to the restoration of chiral symmetry. In addition, results for vector- and axial-vector meson spectral functions are shown using a gauged linear sigma model with quarks. The degeneration of the $rho$ and the $a_1$ spectral function as well as the behavior of their pole masses is discussed.
A valid prediction for a physical observable from quantum field theory should be independent of the choice of renormalization scheme -- this is the primary requirement of renormalization group invariance (RGI). Satisfying scheme invariance is a challenging problem for perturbative QCD (pQCD), since a truncated perturbation series does not automatically satisfy the requirements of the renormalization group. Two distinct approaches for satisfying the RGI principle have been suggested in the literature. One is the Principle of Maximum Conformality (PMC) in which the terms associated with the $beta$-function are absorbed into the scale of the running coupling at each perturbative order; its predictions are scheme and scale independent at every finite order. The other approach is the Principle of Minimum Sensitivity (PMS), which is based on local RGI; the PMS approach determines the optimal renormalization scale by requiring the slope of the approximant of an observable to vanish. In this paper, we present a detailed comparison of the PMC and PMS procedures by analyzing two physical observables $R_{e+e-}$ and $Gamma(Hto bbar{b})$ up to four-loop order in pQCD. At the four-loop level, the PMC and PMS predictions for both observables agree within small errors with those of conventional scale setting assuming a physically-motivated scale, and each prediction shows small scale dependences. However, the convergence of the pQCD series at high orders, behaves quite differently: The PMC displays the best pQCD convergence since it eliminates divergent renormalon terms; in contrast, the convergence of the PMS prediction is questionable, often even worse than the conventional prediction based on an arbitrary guess for the renormalization scale. ......
134 - J.-L. Kneur , A. Neveu 2015
Our recently developed variant of variationnally optimized perturbation (OPT), in particular consistently incorporating renormalization group properties (RGOPT), is adapted to the calculation of the QCD spectral density of the Dirac operator and the related chiral quark condensate $langle bar q q rangle$ in the chiral limit, for $n_f=2$ and $n_f=3$ massless quarks. The results of successive sequences of approximations at two-, three-, and four-loop orders of this modified perturbation, exhibit a remarkable stability. We obtain $langle bar q qrangle^{1/3}_{n_f=2}(2, {rm GeV}) = -(0.833-0.845) barLambda_2 $, and $ langlebar q qrangle^{1/3}_{n_f=3}(2, {rm GeV}) = -(0.814-0.838) barLambda_3 $ where the range spanned by the first and second numbers (respectively four- and three-loop order results) defines our theoretical error, and $barLambda_{n_f}$ is the basic QCD scale in the $overline{MS}$-scheme. We obtain a moderate suppression of the chiral condensate when going from $n_f=2$ to $n_f=3$. We compare these results with some other recent determinations from other nonperturbative methods (mainly lattice and spectral sum rules).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا