Do you want to publish a course? Click here

Gradient flow exact renormalization group

77   0   0.0 ( 0 )
 Added by Hiroshi Suzuki
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The gradient flow bears a close resemblance to the coarse graining, the guiding principle of the renormalization group (RG). In the case of scalar field theory, a precise connection has been made between the gradient flow and the RG flow of the Wilson action in the exact renormalization group (ERG) formalism. By imitating the structure of this connection, we propose an ERG differential equation that preserves manifest gauge invariance in Yang--Mills theory. Our construction in continuum theory can be extended to lattice gauge theory.



rate research

Read More

The gradient flow exact renormalization group (GFERG) is an exact renormalization group motivated by the Yang--Mills gradient flow and its salient feature is a manifest gauge invariance. We generalize this GFERG, originally formulated for the pure Yang--Mills theory, to vector-like gauge theories containing fermion fields, keeping the manifest gauge invariance. For the chiral symmetry we have two options: one possible formulation preserves the conventional form of the chiral symmetry and the other simpler formulation realizes the chiral symmetry in a modified form `a la Ginsparg--Wilson. We work out a gauge-invariant local Wilson action in quantum electrodynamics to the lowest nontrivial order of perturbation theory. This Wilson action reproduces the correct axial anomaly in~$D=2$.
236 - Shoichi Ichinose 2011
Casimir energy is calculated for 5D scalar theory in the {it warped} geometry. A new regularization, called {it sphere lattice regularization}, is taken. The regularized configuration is {it closed-string like}. We numerically evaluate $La$(4D UV-cutoff), $om$(5D bulk curvature, extra space UV-boundary parameter) and $T$(extra space IR-boundary parameter) dependence of Casimir energy. 5D Casimir energy is {it finitely} obtained after the {it proper renormalization procedure.} The {it warp parameter} $om$ suffers from the {it renormalization effect}. Regarding Casimir energy as the main contribution to the cosmological term, we examine the dark energy problem.
We summarize results for local and global properties of the effective potential for the Higgs boson obtained from the functional renormalization group, which allows to describe the effective potential as a function of both scalar field amplitude and RG scale. This sheds light onto the limitations of standard estimates which rely on the identification of the two scales and helps clarifying the origin of a possible property of meta-stability of the Higgs potential. We demonstrate that the inclusion of higher-dimensional operators induced by an underlying theory at a high scale (GUT or Planck scale) can relax the conventional lower bound on the Higgs mass derived from the criterion of absolute stability.
We present analytical results for the Euclidean 2-point correlator of the flavor-singlet vector current evolved by the gradient flow at next-to-leading order ($O(g^2)$) in perturbatively massless QCD-like theories. We show that the evolved 2-point correlator requires multiplicative renormalization, in contrast to the nonevolved case, and confirm, in agreement with other results in the literature, that such renormalization ought to be identified with a universal renormalization of the evolved elementary fermion field in all evolved fermion-bilinear currents, whereas the gauge coupling renormalizes as usual. We explicitly derive the asymptotic solution of the Callan-Symanzik equation for the connected 2-point correlators of these evolved currents in the limit of small gradient-flow time $sqrt{t}$, at fixed separation $|x-y|$. Incidentally, this computation determines the leading coefficient of the operator-product expansion (OPE) in the small $t$ limit for the evolved currents in terms of their local nonevolved counterpart. Our computation also implies that, in the evolved case, conservation of the vector current, hence transversality of the corresponding 2-point correlator, is no longer related to the nonrenormalization, in contrast to the nonevolved case. Indeed, for small flow time the evolved vector current is conserved up to $O(t)$ softly violating effects, despite its $t$-dependent nonvanishing anomalous dimension.
Can large distance high energy QCD be described by Reggeon Field Theory as an effective emergent theory? We start to investigate the issue employing functional renormalisation group techniques.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا