No Arabic abstract
We present results for in-medium spectral functions obtained within the Functional Renormalization Group framework. The analytic continuation from imaginary to real time is performed in a well-defined way on the level of the flow equations. Based on this recently developed method, results for the sigma and the pion spectral function for the quark-meson model are shown at finite temperature, finite quark-chemical potential and finite spatial momentum. It is shown how these spectral function become degenreate at high temperatures due to the restoration of chiral symmetry. In addition, results for vector- and axial-vector meson spectral functions are shown using a gauged linear sigma model with quarks. The degeneration of the $rho$ and the $a_1$ spectral function as well as the behavior of their pole masses is discussed.
We employ the functional renormalization group approach formulated on the Schwinger-Keldysh contour to calculate real-time correlation functions in scalar field theories. We provide a detailed description of the formalism, discuss suitable truncation schemes for real-time calculations as well as the numerical procedure to self-consistently solve the flow equations for the spectral function. Subsequently, we discuss the relations to other perturbative and non-perturbative approaches to calculate spectral functions, and present a detailed comparison and benchmark in $d=0+1$ dimensions.
We introduce a systematic approach for the resummation of perturbative series which involve large logarithms not only due to large invariant mass ratios but large rapidities as well. Series of this form can appear in a variety of gauge theory observables. The formalism is utilized to calculate the jet broadening event shape in a systematic fashion to next to leading logarithmic order. An operator definition of the factorized cross section as well as a closed form of the next-to leading log cross section are presented. The result agrees with the data to within errors.
Our renormalization group consistent variant of optimized perturbation, RGOPT, is used to calculate the nonperturbative QCD spectral density of the Dirac operator and the related chiral quark condensate $langle bar q q rangle$, for $n_f=2$ and $n_f=3$ massless quarks. Sequences of approximations at two-, three-, and four-loop orders are very stable and give $langle bar q q rangle^{1/3}_{n_f=2}(2, {rm GeV}) = -(0.833-0.845) barLambda_2 $, and $ langle bar q q rangle^{1/3}_{n_f=3}(2, {rm GeV}) = -(0.814-0.838) barLambda_3 $ where the range is our estimated theoretical error and $barLambda_{n_f}$ the basic QCD scale in the $rm bar{MS}$-scheme. We compare those results with other recent determinations (from lattice calculations and spectral sum rules).
Deriving accurate energy density functional is one of the central problems in condensed matter physics, nuclear physics, and quantum chemistry. We propose a novel method to deduce the energy density functional by combining the idea of the functional renormalization group and the Kohn-Sham scheme in density functional theory. The key idea is to solve the renormalization group flow for the effective action decomposed into the mean-field part and the correlation part. Also, we propose a simple practical method to quantify the uncertainty associated with the truncation of the correlation part. By taking the $varphi^4$ theory in zero dimension as a benchmark, we demonstrate that our method shows extremely fast convergence to the exact result even for the highly strong coupling regime.
The spectrum of two-point functions in a holographic renormalization group flow from an ultraviolet (UV) to an infrared (IR) conformal fixed point is necessarily continuous. For a toy model, the spectral function does not only show the expected UV and IR behaviours, but other interesting features such as sharp peaks and oscillations in the UV. The spectral functions for the SU(3)xU(1) flow in AdS_4/CFT_3 and the SU(2)xU(1) flow in AdS_5/CFT_4 are calculated numerically. They exhibit a simple cross-over behaviour and reproduce the conformal dimensions of the dual operators in the UV and IR conformal phases.