Do you want to publish a course? Click here

High Resolution Spectroscopy of Two-Dimensional Electron Systems

289   0   0.0 ( 0 )
 Added by Raymond Ashoori
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spectroscopic methods involving the sudden injection or ejection of electrons in materials are a powerful probe of electronic structure and interactions. These techniques, such as photoemission and tunneling, yield measurements of the single particle density of states (SPDOS) spectrum of a system. The SPDOS is proportional to the probability of successfully injecting or ejecting an electron in these experiments. It is equal to the number of electronic states in the system able to accept an injected electron as a function of its energy and is among the most fundamental and directly calculable quantities in theories of highly interacting systems. However, the two-dimensional electron system (2DES), host to remarkable correlated electron states such as the fractional quantum Hall effect, has proven difficult to probe spectroscopically. Here we present an improved version of time domain capacitance spectroscopy (TDCS) that now allows us to measure the SPDOS of a 2DES with unprecedented fidelity and resolution. Using TDCS, we perform measurements of a cold 2DES, providing the first direct measurements of the single-particle exchange-enhanced spin gap and single particle lifetimes in the quantum Hall system, as well as the first observations of exchange splitting of Landau levels not at the Fermi surface. The measurements reveal the difficult to reach and beautiful structure present in this highly correlated system far from the Fermi surface.



rate research

Read More

Multidimensional coherent optical spectroscopy is one of the most powerful tools for investigating complex quantum mechanical systems. While it was conceived decades ago in magnetic resonance spectroscopy using micro- and radio-waves, it has recently been extended into the visible and UV spectral range. However, resolving MHz energy splittings with ultrashort laser pulses has still remained a challenge. Here, we analyze two-dimensional Fourier spectra for resonant optical excitation of resident electrons to localized trions or donor-bound excitons in semiconductor nanostructures subject to a transverse magnetic field. Particular attention is devoted to Raman coherence spectra which allow one to accurately evaluate tiny splittings of the electron ground state and to determine the relaxation times in the electron spin ensemble. A stimulated step-like Raman process induced by a sequence of two laser pulses creates a coherent superposition of the ground state doublet which can be retrieved only optically due to selective excitation of the same sub-ensemble with a third pulse. This provides the unique opportunity to distinguish between different complexes that are closely spaced in energy in an ensemble. The related experimental demonstration is based on photon echo measurements in an n-type CdTe/(Cd,Mg)Te quantum well structure detected by a heterodyne technique. The difference in the sub-$mu$eV range between the Zeeman splittings of donor-bound electrons and electrons localized at potential fluctuations can be resolved even though the homogeneous linewidth of the optical transitions is larger by two orders of magnitude.
Rectification of microwave radiation (20-40 GHz) by a line boundary between two two-dimensional metals on a silicon surface was observed and investigated at different temperatures, in-plane magnetic fields and microwave powers. The rectified voltage $V_{dc}$ is generated whenever the electron densities $n_{1,2}$ of the two metals are different, changing polarity at $n_1 approx n_2$. Very strong nonlinear response is found when one of the two 2D metals is close to the electron density corresponding to the reported magnetic instability in this system.
We report an universal behaviour of hopping transport in strongly interacting mesoscopic two-dimensional electron systems (2DES). In a certain window of background disorder, the resistivity at low perpendicular magnetic fields follows the expected relation $rho(B_perp) = rho_{rm{B}}exp(alpha B_perp^2)$. The prefactor $rho_{rm{B}}$ decreases exponentially with increasing electron density but saturates to a finite value at higher densities. Strikingly, this value is found to be universal when expressed in terms of absolute resistance and and shows quantisation at $R_{rm{B}}approx h/e^2$ and $R_{rm{B}}approx 1/2$ $ h/e^2$. We suggest a strongly correlated electronic phase as a possible explanation.
Two-dimensional electrons confined to GaAs quantum wells are hallmark platforms for probing electron-electron interaction. Many key observations have been made in these systems as sample quality improved over the years. Here, we present a breakthrough in sample quality via source-material purification and innovation in GaAs molecular beam epitaxy vacuum chamber design. Our samples display an ultra-high mobility of $44times10^6$ cm$^2$/Vs at an electron density of $2.0times10^{11}$ /cm$^2$. These results imply only 1 residual impurity for every $10^{10}$ Ga/As atoms. The impact of such low impurity concentration is manifold. Robust stripe/bubble phases are observed, and several new fractional quantum Hall states emerge. Furthermore, the activation gap of the $ u=5/2$ state, which is widely believed to be non-Abelian and of potential use for topological quantum computing, reaches $Deltasimeq820$ mK. We expect that our results will stimulate further research on interaction-driven physics in a two-dimensional setting and significantly advance the field.
Fermi gases in two dimensions display a surprising collective behavior originating from the head-on carrier collisions. The head-on processes dominate angular relaxation at not-too-high temperatures $Tll T_F$ owing to the interplay of Pauli blocking and momentum conservation. As a result, a large family of excitations emerges, associated with the odd-parity harmonics of momentum distribution and having exceptionally long lifetimes. This leads to tomographic dynamics: fast 1D spatial diffusion along the unchanging velocity direction accompanied by a slow angular dynamics that gradually randomizes velocity orientation. The tomographic regime features an unusual hierarchy of time scales and scale-dependent transport coefficients with nontrivial fractional scaling dimensions, leading to fractional-power current flow profiles and unusual conductance scaling vs. sample width.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا