We demonstrate edge-emitting exciton-polariton (polariton) lasing from 5 to 300 K and amplification of non-radiative guided polariton modes within ZnO waveguides. The mode dispersion below and above the lasing threshold is directly measured using gratings present on top of the sample, fully demonstrating the polaritonic nature of the lasing modes. The threshold is found to be similar to that of radiative polarions in planar ZnO microcavities. These results open broad perspectives for guided polaritonics by allowing an easier and more straightforward implementation of polariton integrated circuits exploiting fast propagating polaritons.
We present an ultrafast all-optical gated amplifier, or transistor, consisting of a forest of ZnO nanowire lasers. A gate light pulse creates a dense electron-hole plasma and excites laser action inside the nanowires. Source light traversing the nanolaser forest is amplified, partly as it is guided through the nanowires, and partly as it propagates diffusively through the forest. We have measured transmission increases at the drain up to a factor 34 for 385-nm light. Time-resolved amplification measurements show that the lasing is rapidly self-quenching, yielding pulse responses as short as 1.2 ps.
In this report we demonstrate a novel concept for a planar cavity polariton beam amplifier using non-resonant excitation. In contrast to resonant excitation schemes, background carriers are injected which form excitons, providing both gain and a repulsive potential for a polariton condensate. Using an attractive potential environment induced by a locally elongated cavity layer, the repulsive potential of the injected background carriers is compensated and a significant amplification of polariton beams is achieved without beam distortion.
We characterize a novel Josephson parametric amplifier based on a flux-tunable quarter-wavelength resonator. The fundamental resonance frequency is ~1GHz, but we use higher modes of the resonator for our measurements. An on-chip tuning line allows for magnetic flux pumping of the amplifier. We investigate and compare degenerate parametric amplification, involving a single mode, and nondegenerate parametric amplification, using a pair of modes. We show that we reach quantum-limited noise performance in both cases, and we show that the added noise can be less than 0.5 added photons in the case of low gain.
Exciton-polaritons are mixed light-matter particles offering a versatile solid state platform to study many-body physical effects. In this work we demonstrate an electrically controlled polariton laser, in a compact, easy-to-fabricate and integrable configuration, based on a semiconductor waveguide. Interestingly, we show that polariton lasing can be achieved in a system without a global minimum in the polariton energy-momentum dispersion. The surface cavity modes for the laser emission are obtained by adding couples of specifically designed diffraction gratings on top of the planar waveguide, forming an in-plane Fabry-Perot cavity. It is thanks to the waveguide geometry, that we can apply a transverse electric field in order to finely tune the laser energy and quality factor of the cavity modes. Remarkably, we exploit the system sensitivity to the applied electric field to achieve an electrically controlled population of coherent polaritons. The precise control that can be reached with the manipulation of the grating properties and of the electric field provides strong advantages to this device in terms of miniaturization and integrability, two main features for the future development of coherent sources from polaritonic technologies.
We investigate the dynamics of chiral edge states in topological polariton systems under laser driving. Using a model system comprised of topolgically trivial excitons and photons with a chiral coupling proposed by Karzig et al. [Phys. Rev. X 5, 031001 (2015)], we investigate the real-time dynamics of a lattice version of this model driven by a laser pulse. By analyzing the time- and momentum-resolved spectral function, measured by time- and angle-resolved photoluminescence in analogy with time- and angle-resolved photoemission spectroscopy in electronic systems, we find that polaritonic states in a ribbon geometry are selectively excited via their resonance with the pump laser photon frequency. This selective excitation mechanism is independent of the necessity of strong laser pumping and polariton condensation. Our work highlights the potential of time-resolved spectroscopy as a complementary tool to real-space imaging for the investigation of topological edge state engineering in devices.