Do you want to publish a course? Click here

Electrically controlled waveguide polariton laser

82   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Exciton-polaritons are mixed light-matter particles offering a versatile solid state platform to study many-body physical effects. In this work we demonstrate an electrically controlled polariton laser, in a compact, easy-to-fabricate and integrable configuration, based on a semiconductor waveguide. Interestingly, we show that polariton lasing can be achieved in a system without a global minimum in the polariton energy-momentum dispersion. The surface cavity modes for the laser emission are obtained by adding couples of specifically designed diffraction gratings on top of the planar waveguide, forming an in-plane Fabry-Perot cavity. It is thanks to the waveguide geometry, that we can apply a transverse electric field in order to finely tune the laser energy and quality factor of the cavity modes. Remarkably, we exploit the system sensitivity to the applied electric field to achieve an electrically controlled population of coherent polaritons. The precise control that can be reached with the manipulation of the grating properties and of the electric field provides strong advantages to this device in terms of miniaturization and integrability, two main features for the future development of coherent sources from polaritonic technologies.



rate research

Read More

We show that with a system of electrically-gated wide quantum wells embedded inside a simple dielectric waveguide structure, it is possible to excite, control, and observe waveguided exciton polaritons that carry an electric dipole moment. We demonstrate that the energy of the propagating dipolariton can be easily tuned using local electrical gates, that their excitation and extraction can be easily done using simple evaporated metal gratings, and that the dipolar interactions between polaritons and between polaritons and excitons can also be controlled by the applied electric fields. This system of gated flying dipolaritons thus exhibit the ability to locally control both the single polariton properties as well as the interactions between polaritons, which should open up opportunities for constructing complex polaritonic circuits and for studying strongly-interacting, correlated polariton gases.
It has been proved that surface plasmon polariton (SPP) can well conserve and transmit the quantum nature of entangled photons. Therefore, further utilization and manipulation of such quantum nature of SPP in a plasmonic chip will be the next task for scientists in this field. In quantum logic circuits, the controlled-NOT (CNOT) gate is the key building block. Here, we implement the first plasmonic quantum CNOT gate with several-micrometer footprint by utilizing a single polarization-dependent beam-splitter (PDBS) fabricated on the dielectric-loaded SPP waveguide (DLSPPW). The quantum logic function of the CNOT gate is characterized by the truth table with an average fidelity of. Its entangling ability to transform a separable state into an entangled state is demonstrated with the visibilities of and for non-orthogonal bases. The DLSPPW based CNOT gate is considered to have good integratability and scalability, which will pave a new way for quantum information science.
Ultrafast nonlinear photonics enables a host of applications in advanced on-chip spectroscopy and information processing. These rely on a strong intensity dependent (nonlinear) refractive index capable of modulating optical pulses on sub-picosecond timescales and on length scales suitable for integrated photonics. Currently there is no platform that can provide this for the UV spectral range where broadband spectra generated by nonlinear modulation can pave the way to new on-chip ultrafast (bio-) chemical spectroscopy devices. We demonstrate the giant nonlinearity of UV hybrid light-matter states (exciton-polaritons) up to room temperature in an AlInGaN waveguide. We experimentally measure ultrafast nonlinear spectral broadening of UV pulses in a compact 100 $mu$m long device and deduce a nonlinearity 1000 times that in common UV nonlinear materials and comparable to non-UV polariton devices. Our demonstration promises to underpin a new generation of integrated UV nonlinear light sources for advanced spectroscopy and measurement.
We report superfluorescent (SF) emission in electrically pumped InGaN/InGaN QW lasers with saturable absorber. In particular, we observe a superlinear growth of the peak power of SF pulses with increasing amplitude of injected current pulses and attribute it to cooperative pairing of electron-hole (e-h) radiative recombinations. The phase transitions from amplified spontaneous emission to superfluorescence and then to lasing regime is confirmed by observing (i) abrupt peak power growth accompanied by spectral broadening, (ii) spectral shape with hyperbolic secant envelope and (iii) red shift of central wavelength of SF emission pulse. The observed red shift of SF emission is shown to be caused by the pairing of e-h pairs in an indirect cooperative X-transition.
The demand for high-performance chip-scale lasers has driven rapid growth in integrated photonics. The creation of such low-noise laser sources is critical for emerging on-chip applications, ranging from coherent optical communications, photonic microwave oscillators remote sensing and optical rotational sensors. While Brillouin lasers are a promising solution to these challenges, new strategies are needed to create robust, compact, low power and low cost Brillouin laser technologies through wafer-scale integration. To date, chip-scale Brillouin lasers have remained elusive due to the difficulties in realization of these lasers on a commercial integration platform. In this paper, we demonstrate, for the first time, monolithically integrated Brillouin lasers using a wafer-scale process based on an ultra-low loss Si3N4/SiO2 waveguide platform. Cascading of stimulated Brillouin lasing to 10 Stokes orders was observed in an integrated bus-coupled resonator with a loaded Q factor exceeding 28 million. We experimentally quantify the laser performance, including threshold, slope efficiency and cascading dynamics, and compare the results with theory. The large mode volume integrated resonator and gain medium supports a TE-only resonance and unique 2.72 GHz free spectral range, essential for high performance integrated Brillouin lasing. The laser is based on a non-acoustic guiding design that supplies a broad Brillouin gain bandwidth. Characteristics for high performance lasing are demonstrated due to large intra-cavity optical power and low lasing threshold power. Consistent laser performance is reported for multiple chips across multiple wafers. This design lends itself to wafer-scale integration of practical high-yield, highly coherent Brillouin lasers on a chip.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا