Do you want to publish a course? Click here

Generic second-order macroscopic traffic node model for general multi-input multi-output road junctions via a dynamic system approach

69   0   0.0 ( 0 )
 Added by Matthew A. Wright
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

This paper addresses an open problem in traffic modeling: the second-order macroscopic node problem. A second-order macroscopic traffic model, in contrast to a first-order model, allows for variation of driving behavior across subpopulations of vehicles in the flow. The second-order models are thus more descriptive (e.g., they have been used to model variable mixtures of behaviorally-different traffic, like car/truck traffic, autonomous/human-driven traffic, etc.), but are much more complex. The second-order node problem is a particularly complex problem, as it requires the resolution of discontinuities in traffic density and mixture characteristics, and solving of throughflows for arbitrary numbers of input and output roads to a node (in other words, this is an arbitrary-dimensional Riemann problem with two conserved quantities). In this paper, we extend the well-known Generic Class of Node Model constraints to the second order and present a simple solution algorithm to the second-order node problem. Our solution makes use of a recently-introduced dynamic system characterization of the first-order node model problem, which gives insight and intuition as to the continuous-time dynamics implicit in node models. We further argue that the common supply and demand construction of node models that decouples them from link models is not suitable to the second-order node problem. Our second-order node model and solution method have immediate applications in allowing modeling of behaviorally-complex traffic flows of contemporary interest (like partially-autonomous-vehicle flows) in arbitrary road networks.



rate research

Read More

To help mitigate road congestion caused by the unrelenting growth of traffic demand, many transportation authorities have implemented managed lane policies, which restrict certain freeway lanes to certain types of vehicles. It was originally thought that managed lanes would improve the use of existing infrastructure through demand-management behaviors like carpooling, but implementations have often been characterized by unpredicted phenomena that are sometimes detrimental to system performance. The development of traffic models that can capture these sorts of behaviors is a key step for helping managed lanes deliver on their promised gains. Towards this goal, this paper presents an approach for solving for driver behavior of entering and exiting managed lanes at the macroscopic (i.e., fluid approximation of traffic) scale. Our method is inspired by recent work in extending a dynamic-system-based modeling framework from traffic behaviors on individual roads, to models at junctions, and can be considered a further extension of this dynamic-system paradigm to the route/lane choice problem. Unlike traditional route choice models that are often based on discrete-choice methods and often rely on computing and comparing drivers estimated travel times from taking different routes, our method is agnostic to the particular choice of physical traffic model and is suited specifically towards making decisions at these interfaces using only local information. These features make it a natural drop-in component to extend existing dynamic traffic modeling methods.
We study the derivation of generic high order macroscopic traffic models from a follow-the-leader particle description via a kinetic approach. First, we recover a third order traffic model as the hydrodynamic limit of an Enskog-type kinetic equation. Next, we introduce in the vehicle interactions a binary control modelling the automatic feedback provided by driver-assist vehicles and we upscale such a new particle description by means of another Enskog-based hydrodynamic limit. The resulting macroscopic model is now a Generic Second Order Model (GSOM), which contains in turn a control term inherited from the microscopic interactions. We show that such a control may be chosen so as to optimise global traffic trends, such as the vehicle flux or the road congestion, constrained by the GSOM dynamics. By means of numerical simulations, we investigate the effect of this control hierarchy in some specific case studies, which exemplify the multiscale path from the vehicle-wise implementation of a driver-assist control to its optimal hydrodynamic design.
We address the problem of state estimation, attack isolation, and control of discrete-time linear time-invariant systems under (potentially unbounded) actuator and sensor false data injection attacks. Using a bank of unknown input observers, each observer leading to an exponentially stable estimation error (in the attack-free case), we propose an observer-based estimator that provides exponential estimates of the system state in spite of actuator and sensor attacks. Exploiting sensor and actuator redundancy, the estimation scheme is guaranteed to work if a sufficiently small subset of sensors and actuators are under attack. Using the proposed estimator, we provide tools for reconstructing and isolating actuator and sensor attacks; and a control scheme capable of stabilizing the closed-loop dynamics by switching off isolated actuators. Simulation results are presented to illustrate the performance of our tools.
The coordination of highly automated vehicles (or agents) in road intersections is an inherently nonconvex and challenging problem. In this paper, we propose a distributed motion planning scheme under reasonable vehicle-to-vehicle communication requirements. Each agent solves a nonlinear model predictive control problem in real time and transmits its planned trajectory to other agents, which may have conflicting objectives. The problem formulation is augmented with conditional constraints that enable the agents to decide whether to wait at a stopping line, if safe crossing is not possible. The involved nonconvex problems are solved very efficiently using the proximal averaged Newton method for optimal control (PANOC). We demonstrate the efficiency of the proposed approach in a realistic intersection crossing scenario.
Kalman filters and observers are two main classes of dynamic state estimation (DSE) routines. Power system DSE has been implemented by various Kalman filters, such as the extended Kalman filter (EKF) and the unscented Kalman filter (UKF). In this paper, we discuss two challenges for an effective power system DSE: (a) model uncertainty and (b) potential cyber attacks. To address this, the cubature Kalman filter (CKF) and a nonlinear observer are introduced and implemented. Various Kalman filters and the observer are then tested on the 16-machine, 68-bus system given realistic scenarios under model uncertainty and different types of cyber attacks against synchrophasor measurements. It is shown that CKF and the observer are more robust to model uncertainty and cyber attacks than their counterparts. Based on the tests, a thorough qualitative comparison is also performed for Kalman filter routines and observers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا