Do you want to publish a course? Click here

Low-Temperature Conductivity of Weakly Interacting Quantum Spin Hall Edges in Strained-Layer InAs/GaInSb

69   0   0.0 ( 0 )
 Added by Tingxin Li
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report low-temperature transport measurements in strained InAs/Ga0.68In0.32Sb quantum wells, which supports time-reversal symmetry-protected helical edge states. The temperature and bias voltage dependence of the helical edge conductance for devices of various sizes are consistent with the theoretical expectation of a weakly interacting helical edge state. Moreover, we found that the magnetoresistance of the helical edge states is related to the edge interaction effect and the disorder strength.

rate research

Read More

We report on a class of quantum spin Hall insulators (QSHIs) in strained-layer InAs/GaInSb quantum wells, in which the bulk gaps are enhanced by up to five folds as compared to the binary InAs/GaSb QSHI. Remarkably, with consequently increasing edge velocity, the edge conductance at zero and applied magnetic fields manifests time reversal symmetry (TRS) -protected properties consistent with Z2 topological insulator. The InAs/GaInSb bilayers offer a much sought-after platform for future studies and applications of the QSHI.
A two-dimensional (2D) topological insulator (TI) exhibits the quantum spin Hall (QSH) effect, in which topologically protected spin-polarized conducting channels exist at the sample edges. Experimental signatures of the QSH effect have recently been reported for the first time in an atomically thin material, monolayer WTe2. Electrical transport measurements on exfoliated samples and scanning tunneling spectroscopy on epitaxially grown monolayer islands signal the existence of edge modes with conductance approaching the quantized value. Here, we directly image the local conductivity of monolayer WTe2 devices using microwave impedance microscopy, establishing beyond doubt that conduction is indeed strongly localized to the physical edges at temperatures up to 77 K and above. The edge conductivity shows no gap as a function of gate voltage, ruling out trivial conduction due to band bending or in-gap states, and is suppressed by magnetic field as expected. Interestingly, we observe additional conducting lines and rings within most samples which can be explained by edge states following boundaries between topologically trivial and non-trivial regions. These observations will be critical for interpreting and improving the properties of devices incorporating WTe2 or other air-sensitive 2D materials. At the same time, they reveal the robustness of the QSH channels and the potential to engineer and pattern them by chemical or mechanical means in the monolayer material platform.
The quantum-spin-Hall (QSH) phase of 2D topological insulators has attracted increased attention since the onset of 2D materials research. While large bulk gaps with vanishing edge gaps in atomically thin layers have been reported, verifications of the QSH phase by resistance measurements are comparatively few. This is partly due to the poor uniformity of the bulk gap induced by the substrate over a large sample area and/or defects induced by oxidation. Here, we report the observation of the QSH phase at room-temperature in the 1T-phase of few-layer MoS2 patterned onto the 2H semiconducting phase using low-power and short-time laser beam irradiation. Two different resistance measurements reveal hallmark transport conductance values, ~e2/2h and e2/4h, as predicted by the theory. Magnetic-field dependence, scanning tunneling spectra, and calculations support the emergence of the room-temperature QSH phase. Although further experimental verification is still desirable, our results provide feasible application to room-temperature topological devices.
We show that edges of Quantum Spin Hall topological insulators represent a natural platform for realization of exotic supersolid phase. On one hand, fermionic edge modes are helical due to the nontrivial topology of the bulk. On the other hand, a disorder at the edge or magnetic adatoms may produce a dense array of localized spins interacting with the helical electrons. The spin subsystem is magnetically frustrated since the indirect exchange favors formation of helical spin order and the direct one favors (anti)ferromagnetic ordering of the spins. At a moderately strong direct exchange, the competition between these spin interactions results in the spontaneous breaking of parity and in the Ising type order of the $z$-components at zero temperature. If the total spin is conserved the spin order does not pin a collective massless helical mode which supports the ideal transport. In this case, the phase transition converts the helical spin order to the order of a chiral lattice supersolid. This represents a radically new possibility for experimental studies of the elusive supersolidity.
We report on the study of the electrical current flowing in weakly coupled superlattice (SL) structures under an applied electric field at very low temperature, i.e. in the tunneling regime. This low temperature transport is characterized by an extremely low tunneling probability between adjacent wells. Experimentally, I(V) curves at low temperature display a striking feature, i.e a plateau or null differential conductance. A theoretical model based on the evaluation of scattering rates is developed in order to understand this behaviour, exploring the different scattering mechanisms in AlGaAs alloys. The dominant interaction in usual experimental conditions such as ours is found to be the electron-ionized donors scattering. The existence of the plateau in the I(V) characteristics is physically explained by a competition between the electric field localization of the Wannier-Stark electron states in the weakly coupled quantum wells and the electric field assisted tunneling between adjacent wells. The influence of the doping concentration and profile as well as the presence of impurities inside the barrier are discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا