Do you want to publish a course? Click here

Room-temperature quantum spin Hall phase in laser-patterned few-layer 1T- MoS2

244   0   0.0 ( 0 )
 Added by Junji Haruyama
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The quantum-spin-Hall (QSH) phase of 2D topological insulators has attracted increased attention since the onset of 2D materials research. While large bulk gaps with vanishing edge gaps in atomically thin layers have been reported, verifications of the QSH phase by resistance measurements are comparatively few. This is partly due to the poor uniformity of the bulk gap induced by the substrate over a large sample area and/or defects induced by oxidation. Here, we report the observation of the QSH phase at room-temperature in the 1T-phase of few-layer MoS2 patterned onto the 2H semiconducting phase using low-power and short-time laser beam irradiation. Two different resistance measurements reveal hallmark transport conductance values, ~e2/2h and e2/4h, as predicted by the theory. Magnetic-field dependence, scanning tunneling spectra, and calculations support the emergence of the room-temperature QSH phase. Although further experimental verification is still desirable, our results provide feasible application to room-temperature topological devices.



rate research

Read More

Stanene was proposed to be a quantum spin hall insulator containing topological edges states and a time reversal invariant topological superconductor hosting helical Majorana edge mode. Recently, experimental evidences of existence of topological edge states have been found in monolayer stanene films and superconductivity has been observed in few-layer stanene films excluding single layer. An integrated system with both topological edge states and superconductivity are higly pursued as a possible platform to realize topological superconductivity. Few-layer stanene show great potential to meet this requirement and is highly desired in experiment. Here we successfully grow few-layer stanene on bismuth (111) substrate. Both topological edge states and superconducting gaps are observed by in-situ scanning tunneling microscopy/spectroscopy (STM/STS). Our results take a further step towards topological superconductivity by stanene films.
State-of-the-art fabrication and characterization techniques have been employed to measure the thermal conductivity of suspended, single-crystalline MoS2 and MoS2/hBN heterostructures. Two-laser Raman scattering thermometry was used combined with real time measurements of the absorbed laser power, which allowed us to determine the thermal conductivities without any assumptions. Measurements on MoS2 layers with thicknesses of 5 and 14 exhibit thermal conductivity in the range between 12 and 24 Wm-1K-1. Additionally, after determining the thermal conductivity of a selected MoS2 sample, an hBN flake was transferred onto it and the effective thermal conductivity of the heterostructure was subsequently measured. Remarkably, despite that the thickness of the hBN layer was less than a third of the thickness of the MoS2 layer, the heterostructure showed an almost eight-fold increase in the thermal conductivity, being able to dissipate more than 10 times the laser power without any visible sign of damage. These results are consistent with a high thermal interface conductance between MoS2 and hBN and an efficient in-plane heat spreading driven by hBN. Indeed, we estimate G 70 MWm-2K-1 which is significantly higher than previously reported values. Our work therefore demonstrates that the insertion of hBN layers in potential MoS2 based devices holds the promise for efficient thermal management.
60 - P. Chen , W.-W. Pai , Y.-H. Chan 2018
Two-dimensional (2D) topological insulators (TIs) are promising platforms for low-dissipation spintronic devices based on the quantum spin Hall (QSH) effect, but experimental realization of such systems with a large band gap suitable for room-temperature applications has proven difficult. Here, we report the successful growth on bilayer graphene of a quasi-freestanding WSe$_2$ single layer with the 1T structure that does not exist in the bulk form of WSe$_2$. Using angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy/spectroscopy (STM/STS), we observed a gap of 129 meV in the 1T layer and an in-gap edge state located near the layer boundary. The systems 2D TI characters are confirmed by first-principles calculations. The observed gap diminishes with doping by Rb adsorption, ultimately leading to an insulator-semimetal transition. The discovery of this large-gap 2D TI with a tunable band gap opens up opportunities for developing advanced nanoscale systems and quantum devices.
Two dimensional (2D) materials provide a unique platform for spintronics and valleytronics due to the ability to combine vastly different functionalities into one vertically-stacked heterostructure, where the strengths of each of the constituent materials can compensate for the weaknesses of the others. Graphene has been demonstrated to be an exceptional material for spin transport at room temperature, however it lacks a coupling of the spin and optical degrees of freedom. In contrast, spin/valley polarization can be efficiently generated in monolayer transition metal dichalcogenides (TMD) such as MoS2 via absorption of circularly-polarized photons, but lateral spin or valley transport has not been realized at room temperature. In this letter, we fabricate monolayer MoS2/few-layer graphene hybrid spin valves and demonstrate, for the first time, the opto-valleytronic spin injection across a TMD/graphene interface. We observe that the magnitude and direction of spin polarization is controlled by both helicity and photon energy. In addition, Hanle spin precession measurements confirm optical spin injection, spin transport, and electrical detection up to room temperature. Finally, analysis by a one-dimensional drift-diffusion model quantifies the optically injected spin current and the spin transport parameters. Our results demonstrate a 2D spintronic/valleytronic system that achieves optical spin injection and lateral spin transport at room temperature in a single device, which paves the way for multifunctional 2D spintronic devices for memory and logic applications.
The two-dimensional topological insulators (2DTI) host a full gap in the bulk band, induced by spin-orbit coupling (SOC) effect, together with the topologically protected gapless edge states. However, the SOC-induced gap is usually small, and it is challenging to suppress the bulk conductance and thus to realize the quantum spin Hall (QSH) effect. In this study, we find a novel mechanism to effectively suppress the bulk conductance. By using the quasiparticle interference (QPI) technique with scanning tunneling spectroscopy (STS), we demonstrate that the QSH candidate single-layer 1T-WTe$_2$ has a semi-metal bulk band structure with no full SOC-induced gap. Surprisingly, in this two-dimensional system, we find the electron interactions open a Coulomb gap which is always pinned at the Fermi energy (E$_F$). The opening of the Coulomb gap can efficiently diminish the bulk state at the E$_F$ and is in favor of the observation of the quantized conduction of topological edge states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا