Do you want to publish a course? Click here

Electrostatic and whistler instabilities excited by an electron beam

127   0   0.0 ( 0 )
 Added by Xin An
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The electron beam-plasma system is ubiquitous in the space plasma environment. Here, using a Darwin particle-in-cell method, the excitation of electrostatic and whistler instabilities by a gyrating electron beam is studied in support of recent laboratory experiments. It is assumed that the total plasma frequency $omega_{pe}$ is larger than the electron cyclotron frequency $Omega_e$. The fast-growing electrostatic beam-mode waves saturate in a few plasma oscillations by slowing down and relaxing the electron beam parallel to the background magnetic field. Upon their saturation, the finite amplitude electrostatic beam-mode waves can resonate with the tail of the background thermal electrons and accelerate them to the beam parallel velocity. The slower-growing whistler waves are excited in primarily two resonance modes: (a) through Landau resonance due to the inverted slope of the beam electrons in the parallel velocity; (b) through cyclotron resonance by scattering electrons to both lower pitch angles and smaller energies. It is demonstrated that, for a field-aligned beam, the whistler instability can be suppressed by the electrostatic instability due to a faster energy transfer rate between beam electrons and the electrostatic waves. Such a competition of growth between whistler and electrostatic waves depends on the ratio of $omega_{pe}/Omega_e$. In terms of wave propagation, beam-generated electrostatic waves are confined to the beam region whereas beam-generated whistler waves transport energy away from the beam.



rate research

Read More

Electron beam-generated whistler waves are widely found in the Earths space plasma environment and are intricately involved in a number of phenomena. Here we study the linear growth of whistler eigenmodes excited by a finite gyrating electron beam, to facilitate the interpretation of relevant experiments on beam-generated whistler waves in the Large Plasma Device at UCLA. A linear instability analysis for an infinite gyrating beam is first performed. It is shown that whistler waves are excited through a combination of cyclotron resonance, Landau resonance and anomalous cyclotron resonance, consistent with our experimental results. By matching the whistler eigenmodes inside and outside the beam at the boundary, a linear growth rate is obtained for each wave mode and the corresponding mode structure is constructed. These eigenmodes peak near the beam boundary, leak out of the beam region and decay to zero far away from the beam.
Chorus-like whistler-mode waves that are known to play a fundamental role in driving radiation-belt dynamics are excited on the Large Plasma Device by the injection of a helical electron beam into a cold plasma. The mode structure of the excited whistler wave is identified using a phase-correlation technique showing that the waves are excited through a combination of Landau resonance, cyclotron resonance and anomalous cyclotron resonance. The dominant wave mode excited through cyclotron resonance is quasi-parallel propagating, whereas wave modes excited through Landau resonance and anomalous cyclotron resonance propagate at oblique angles that are close to the resonance cone. An analysis of the linear wave growth rates captures the major observations in the experiment. The results have important implications for the generation process of whistler waves in the Earths inner magnetosphere.
578 - T.C. Li , J.F. Drake , M. Swisdak 2014
In observations of flare-heated electrons in the solar corona, a longstanding problem is the unexplained prolonged lifetime of the electrons compared to their transit time across the source. This suggests confinement. Recent particle-in-cell (PIC) simulations, which explored the transport of pre-accelerated hot electrons through ambient cold plasma, showed that the formation of a highly localized electrostatic potential drop, in the form of a double layer (DL), significantly inhibited the transport of hot electrons (T.C. Li, J.F. Drake, and M. Swisdak, 2012, ApJ, 757, 20). The effectiveness of confinement by a DL is linked to the strength of the DL as defined by its potential drop. In this work, we investigate the scaling of the DL strength with the hot electron temperature by PIC simulations, and find a linear scaling. We demonstrate that the strength is limited by the formation of parallel shocks. Based on this, we analytically determine the maximum DL strength, and find also a linear scaling with the hot electron temperature. The DL strength obtained from the analytic calculation is comparable to that from the simulations. At the maximum strength, the DL is capable of confining a significant fraction of hot electrons in the source.
Kinetic simulations and theory demonstrate that whistler waves can excite oblique, short-wavelength fluctuations through secondary drift instabilities if a population of sufficiently cold plasma is present. The excited modes lead to heating of the cold populations and damping of the primary whistler waves. The instability threshold depends on the density and temperature of the cold population and can be relatively small if the temperature of the cold population is sufficiently low. This mechanism may thus play a significant role in controlling amplitude of whistlers in the regions of the Earths magnetosphere where cold background plasma of sufficient density is present.
579 - N. S. Dzhalilov (1 , 2 , 2009
Wave properties and instabilities in a magnetized, anisotropic, collisionless, rarefied hot plasma in fluid approximation are studied, using the 16-moments set of the transport equations obtained from the Vlasov equations. These equations differ from the CGL-MHD fluid model (single fluid equations by Chew, Goldberger, and Low, 1956) by including two anisotropic heat flux evolution equations, where the fluxes invalidate the double polytropic CGL laws. We derived the general dispersion relation for linear compressible wave modes. Besides the classic incompressible fire hose modes there appear four types of compressible wave modes: two fast and slow mirror modes - strongly modified compared to the CGL model - and two thermal modes. In the presence of initial heat fluxes along the magnetic field the wave properties become different for the waves running forward and backward with respect to the magnetic field. The well known discrepancies between the results of the CGL-MHD fluid model and the kinetic theory are now removed: i) The mirror slow mode instability criterion is now the same as that in the kinetic theory. ii) Similarly, in kinetic studies there appear two kinds of fire hose instabilities - incompressible and compressible ones. These two instabilities can arise for the same plasma parameters, and the instability of the new compressible oblique fire hose modes can become dominant. The compressible fire hose instability is the result of the resonance coupling of three retrograde modes - two thermal modes and a fast mirror mode. The results can be applied to the theory of solar and stellar coronal and wind models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا