Kinetic simulations and theory demonstrate that whistler waves can excite oblique, short-wavelength fluctuations through secondary drift instabilities if a population of sufficiently cold plasma is present. The excited modes lead to heating of the cold populations and damping of the primary whistler waves. The instability threshold depends on the density and temperature of the cold population and can be relatively small if the temperature of the cold population is sufficiently low. This mechanism may thus play a significant role in controlling amplitude of whistlers in the regions of the Earths magnetosphere where cold background plasma of sufficient density is present.
The equations describing planar magnetoacoustic waves of permanent form in a cold plasma are rewritten so as to highlight the presence of a naturally small parameter equal to the ratio of the electron and ion masses. If the magnetic field is not nearly perpendicular to the direction of wave propagation, this allows us to use a multiple-scale expansion to demonstrate the existence and nature of nonlinear wave solutions. Such solutions are found to have a rapid oscillation of constant amplitude superimposed on the underlying large-scale variation. The approximate equations for the large-scale variation are obtained by making an adiabatic approximation and in one limit, new explicit solitary pulse solutions are found. In the case of a perpendicular magnetic field, conditions for the existence of solitary pulses are derived. Our results are consistent with earlier studies which were restricted to waves having a velocity close to that of long-wavelength linear magnetoacoustic waves.
Electrostatic waves in a collision-free unmagnetized plasma of electrons with fixed ions are investigated for electron equilibrium velocity distribution functions that deviate slightly from Maxwellian. Of interest are undamped waves that are the small amplitude limit of nonlinear excitations, such as electron acoustic waves (EAWs). A deviation consisting of a small plateau, a region with zero velocity derivative over a width that is a very small fraction of the electron thermal speed, is shown to give rise to new undamped modes, which here are named {it corner modes}. The presence of the plateau turns off Landau damping and allows oscillations with phase speeds within the plateau. These undamped waves are obtained in a wide region of the $(k,omega_{_R})$ plane ($omega_{_R}$ being the real part of the wave frequency and $k$ the wavenumber), away from the well-known `thumb curve for Langmuir waves and EAWs based on the Maxwellian. Results of nonlinear Vlasov-Poisson simulations that corroborate the existence of these modes are described. It is also shown that deviations caused by fattening the tail of the distribution shift roots off of the thumb curve toward lower $k$-values and chopping the tail shifts them toward higher $k$-values. In addition, a rule of thumb is obtained for assessing how the existence of a plateau shifts roots off of the thumb curve. Suggestions are made for interpreting experimental observations of electrostatic waves, such as recent ones in nonneutral plasmas.
The electron beam-plasma system is ubiquitous in the space plasma environment. Here, using a Darwin particle-in-cell method, the excitation of electrostatic and whistler instabilities by a gyrating electron beam is studied in support of recent laboratory experiments. It is assumed that the total plasma frequency $omega_{pe}$ is larger than the electron cyclotron frequency $Omega_e$. The fast-growing electrostatic beam-mode waves saturate in a few plasma oscillations by slowing down and relaxing the electron beam parallel to the background magnetic field. Upon their saturation, the finite amplitude electrostatic beam-mode waves can resonate with the tail of the background thermal electrons and accelerate them to the beam parallel velocity. The slower-growing whistler waves are excited in primarily two resonance modes: (a) through Landau resonance due to the inverted slope of the beam electrons in the parallel velocity; (b) through cyclotron resonance by scattering electrons to both lower pitch angles and smaller energies. It is demonstrated that, for a field-aligned beam, the whistler instability can be suppressed by the electrostatic instability due to a faster energy transfer rate between beam electrons and the electrostatic waves. Such a competition of growth between whistler and electrostatic waves depends on the ratio of $omega_{pe}/Omega_e$. In terms of wave propagation, beam-generated electrostatic waves are confined to the beam region whereas beam-generated whistler waves transport energy away from the beam.
Boundary plasma physics plays an important role in tokamak confinement, but is difficult to simulate in a gyrokinetic code due to the scale-inseparable nonlocal multi-physics in magnetic separatrix and open magnetic field geometry. Neutral particles are also an important part of the boundary plasma physics. In the present paper, noble electrostatic gyrokinetic techniques to simulate the flux-driven, low-beta electrostatic boundary plasma is reported. Gyrokinetic ions and drift-kinetic electrons are utilized without scale-separation between the neoclassical and turbulence dynamics. It is found that the nonlinear intermittent turbulence is a natural gyrokinetic phenomenon in the boundary plasma in the vicinity of the magnetic separatrix surface and in the scrape-off layer.
A higher-order multiscale analysis of the dissipation range of collisionless plasma turbulence is presented using in-situ high-frequency magnetic field measurements from the Cluster spacecraft in a stationary interval of fast ambient solar wind. The observations, spanning five decades in temporal scales, show a crossover from multifractal intermittent turbulence in the inertial range to non-Gaussian monoscaling in the dissipation range. This presents a strong observational constraint on theories of dissipation mechanisms in turbulent collisionless plasmas.