Do you want to publish a course? Click here

Electroweak vacuum stability in presence of singlet scalar dark matter in TeV scale seesaw models

155   0   0.0 ( 0 )
 Added by Vishnudath K. N.
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We consider singlet extensions of the standard model, both in the fermion and the scalar sector, to account for the generation of neutrino mass at the TeV scale and the existence of dark matter respectively. For the neutrino sector we consider models with extra singlet fermions which can generate neutrino mass via the so called inverse or linear seesaw mechanism whereas a singlet scalar is introduced as the candidate for dark matter. We show that although these two sectors are disconnected at low energy, the coupling constants of both the sectors get correlated at high energy scale by the constraints coming from the perturbativity and stability/metastability of the electroweak vacuum. The singlet fermions try to destabilize the electroweak vacuum while the singlet scalar aids the stability. As an upshot, the electroweak vacuum may attain absolute stability even upto the Planck scale for suitable values of the parameters. We delineate the parameter space for the singlet fermion and the scalar couplings for which the electroweak vacuum remains stable/metastable and at the same time giving the correct relic density and neutrino masses and mixing angles as observed.



rate research

Read More

We extend the so-called singlet doublet dark matter model, where the dark matter is an admixture of a Standard Model singlet and a pair of electroweak doublet fermions, by a singlet scalar field. The new portal coupling of it with the dark sector not only contributes to the dark matter phenomenology (involving relic density and direct detection limits), but also becomes important for generation of dark matter mass through its vacuum expectation value. While the presence of dark sector fermions affects the stability of the electroweak vacuum adversely, we find this additional singlet is capable of making the electroweak vacuum absolutely stable upto the Planck scale. A combined study of dark matter phenomenology and Higgs vacuum stability issue reflects that the scalar sector mixing angle can be significantly constrained in this scenario.
It is well known that stable weak scale particles are viable dark matter candidates since the annihilation cross section is naturally about the right magnitude to leave the correct thermal residual abundance. Many dark matter searches have focused on relatively light dark matter consistent with weak couplings to the Standard Model. However, in a strongly coupled theory, or even if the coupling is just a few times bigger than the Standard Model couplings, dark matter can have TeV-scale mass with the correct thermal relic abundance. Here we consider neutral TeV-mass scalar dark matter, its necessary interactions, and potential signals. We consider signals both with and without higher-dimension operators generated by strong coupling at the TeV scale, as might happen for example in an RS scenario. We find some potential for detection in high energy photons that depends on the dark matter distribution. Detection in positrons at lower energies, such as those PAMELA probes, would be difficult though a higher energy positron signal could in principle be detectable over background. However, a light dark matter particle with higher-dimensional interactions consistent with a TeV cutoff can in principle match PAMELA data.
We discuss the issue of vacuum stability of standard model by embedding it within the TeV scale left-right universal seesaw model (called SLRM in the text). This model has only two coupling parameters $(lambda_1, lambda_2)$ in the Higgs potential and only two physical neutral Higgs bosons $(h, H)$. We explore the range of values for $(lambda_1, lambda_2)$ for which the light Higgs boson mass $M_h=126$ GeV and the vacuum is stable for all values of the Higgs fields. Combining with the further requirement that the scalar self couplings remain perturbative till typical GUT scales of order $10^{16}$ GeV, we find (i) an upper and lower limit on the second Higgs $(H)$ mass to be within the range: $0.4 leq frac{M_H}{v_R}leq 0.7$, where the $v_R$ is the parity breaking scale and (ii) that the heavy vector-like top, bottom and $tau$ partner fermions ($P_3, N_3, E_3$) mass have an upper bound $M_{P_3, N_3, E_3} leq v_R$. We discuss some phenomenological aspects of the model pertaining to LHC.
109 - J. Fiaschi , M. Klasen , S. May 2019
By extending the Standard Model with singlet-doublet fermions and triplet scalars, all odd under a new $Z_2$ symmetry, we introduce a radiative seesaw model that can simultaneously account for dark matter, explain the existence of neutrino masses and allow for gauge coupling unification. We explore the viable parameter space of the model after imposing collider, Higgs mass, dark matter, neutrino mass and lepton flavour violation constraints. We find that dark matter in this model is fermionic for masses below about 1 TeV and scalar above and observe a high degree of complementarity between direct detection and lepton flavour violation experiments, which should soon allow to fully probe the fermionic dark matter sector and at least partially the scalar dark matter sector.
We revisit the theory and phenomenology of scalar electroweak multiplet thermal dark matter. We derive the most general, renormalizable scalar potential, assuming the presence of the Standard Model Higgs doublet, $H$, and an electroweak multiplet $Phi$ of arbitrary SU(2$)_L$ rank and hypercharge, $Y$. We show that, in general, the $Phi$-$H$ Higgs portal interactions depend on three, rather than two independent couplings as has been previously considered in the literature. For the phenomenologically viable case of $Y=0$ multiplets, we focus on the septuplet and quintuplet cases, and consider the interplay of relic density and spin-independent direct detection cross section. We show that both the relic density and direct detection cross sections depend on a single linear combination of Higgs portal couplings, $lambda_{rm eff}$. For $lambda_{rm eff}sim mathcal{O}(1)$, present direct detection exclusion limits imply that the neutral component of a scalar electroweak multiplet would comprise a subdominant fraction of the observed DM relic density.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا