Do you want to publish a course? Click here

A radiative seesaw model with GeV singlet-doublet fermion and TeV triplet scalar dark matter

110   0   0.0 ( 0 )
 Added by Michael Klasen
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

By extending the Standard Model with singlet-doublet fermions and triplet scalars, all odd under a new $Z_2$ symmetry, we introduce a radiative seesaw model that can simultaneously account for dark matter, explain the existence of neutrino masses and allow for gauge coupling unification. We explore the viable parameter space of the model after imposing collider, Higgs mass, dark matter, neutrino mass and lepton flavour violation constraints. We find that dark matter in this model is fermionic for masses below about 1 TeV and scalar above and observe a high degree of complementarity between direct detection and lepton flavour violation experiments, which should soon allow to fully probe the fermionic dark matter sector and at least partially the scalar dark matter sector.



rate research

Read More

We extend the so-called singlet doublet dark matter model, where the dark matter is an admixture of a Standard Model singlet and a pair of electroweak doublet fermions, by a singlet scalar field. The new portal coupling of it with the dark sector not only contributes to the dark matter phenomenology (involving relic density and direct detection limits), but also becomes important for generation of dark matter mass through its vacuum expectation value. While the presence of dark sector fermions affects the stability of the electroweak vacuum adversely, we find this additional singlet is capable of making the electroweak vacuum absolutely stable upto the Planck scale. A combined study of dark matter phenomenology and Higgs vacuum stability issue reflects that the scalar sector mixing angle can be significantly constrained in this scenario.
We propose a radiative seesaw model with an inert triplet scalar field in which Majorana neutrino masses are generated at the two loop level. There are fermionic or bosonic dark matter candidates in the model. We find that each candidate can satisfy the WMAP data when its mass is taken to be around the half of the mass of the standard model like Higgs boson. We also discuss phenomenology of the inert triplet scalar bosons, especially focusing on the doubly-charged scalar bosons at Large Hadron Collider in parameter regions constrained by the electroweak precision data and WMAP data. We study how we can distinguish our model from the minimal Higgs triplet model.
We consider singlet extensions of the standard model, both in the fermion and the scalar sector, to account for the generation of neutrino mass at the TeV scale and the existence of dark matter respectively. For the neutrino sector we consider models with extra singlet fermions which can generate neutrino mass via the so called inverse or linear seesaw mechanism whereas a singlet scalar is introduced as the candidate for dark matter. We show that although these two sectors are disconnected at low energy, the coupling constants of both the sectors get correlated at high energy scale by the constraints coming from the perturbativity and stability/metastability of the electroweak vacuum. The singlet fermions try to destabilize the electroweak vacuum while the singlet scalar aids the stability. As an upshot, the electroweak vacuum may attain absolute stability even upto the Planck scale for suitable values of the parameters. We delineate the parameter space for the singlet fermion and the scalar couplings for which the electroweak vacuum remains stable/metastable and at the same time giving the correct relic density and neutrino masses and mixing angles as observed.
The singlet majoron model of seesaw neutrino mass is appended by one dark Majorana fermion singlet $chi$ with $L=2$ and one dark complex scalar singlet $zeta$ with $L=1$. This simple setup allows $chi$ to obtain a small radiative mass anchored by the same heavy right-handed neutrinos, whereas the one-loop decay of the standard-model Higgs boson to $chi chi + bar{chi} bar{chi}$ provides the freeze-in mechanism for $chi$ to be the light dark matter of the Universe.
We study the dark matter phenomenology of scotogenic frameworks through the rather illustrative model T1-2A extending the Standard Model by scalar and fermionic singlets and doublets. Such a setup is phenomenologically attractive since it provides the radiative generation of neutrino masses, while also including viable candidates for cold dark matter. We employ a Markov Chain Monte Carlo algorithm to explore the associated parameter space in view of numerous constraints stemming from the Higgs mass, the neutrino sector, dark matter, and lepton-flavour violating processes. After a general discussion of the results, we focus on the case of fermionic dark matter, which remains rather uncovered in the literature so far. We discuss the associated phenomenology and show that in this particular case a rather specific mass spectrum is expected with fermion masses just above 1 TeV. Our study may serve as a guideline for future collider studies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا