Do you want to publish a course? Click here

TeV Scale Singlet Dark Matter

243   0   0.0 ( 0 )
 Added by Eduardo Pont\\'on
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is well known that stable weak scale particles are viable dark matter candidates since the annihilation cross section is naturally about the right magnitude to leave the correct thermal residual abundance. Many dark matter searches have focused on relatively light dark matter consistent with weak couplings to the Standard Model. However, in a strongly coupled theory, or even if the coupling is just a few times bigger than the Standard Model couplings, dark matter can have TeV-scale mass with the correct thermal relic abundance. Here we consider neutral TeV-mass scalar dark matter, its necessary interactions, and potential signals. We consider signals both with and without higher-dimension operators generated by strong coupling at the TeV scale, as might happen for example in an RS scenario. We find some potential for detection in high energy photons that depends on the dark matter distribution. Detection in positrons at lower energies, such as those PAMELA probes, would be difficult though a higher energy positron signal could in principle be detectable over background. However, a light dark matter particle with higher-dimensional interactions consistent with a TeV cutoff can in principle match PAMELA data.

rate research

Read More

132 - M. Beneke , A. Broggio , C. Hasner 2018
The annihilation cross section of TeV scale dark matter particles $chi^0$ with electroweak charges into photons is affected by large quantum corrections due to Sudakov logarithms and the Sommerfeld effect. We calculate the semi-inclusive photon energy spectrum in $chi^0chi^0to gamma+X$ in the vicinity of the maximal photon energy $E_gamma = m_chi$ with NLL accuracy in an all-order summation of the electroweak perturbative expansion adopting the pure wino model. This results in the most precise theoretical prediction of the annihilation rate for $gamma$-ray telescopes with photon energy resolution of parametric order $m_W^2/m_chi$ for photons with TeV energies.
We consider singlet extensions of the standard model, both in the fermion and the scalar sector, to account for the generation of neutrino mass at the TeV scale and the existence of dark matter respectively. For the neutrino sector we consider models with extra singlet fermions which can generate neutrino mass via the so called inverse or linear seesaw mechanism whereas a singlet scalar is introduced as the candidate for dark matter. We show that although these two sectors are disconnected at low energy, the coupling constants of both the sectors get correlated at high energy scale by the constraints coming from the perturbativity and stability/metastability of the electroweak vacuum. The singlet fermions try to destabilize the electroweak vacuum while the singlet scalar aids the stability. As an upshot, the electroweak vacuum may attain absolute stability even upto the Planck scale for suitable values of the parameters. We delineate the parameter space for the singlet fermion and the scalar couplings for which the electroweak vacuum remains stable/metastable and at the same time giving the correct relic density and neutrino masses and mixing angles as observed.
We consider an extension of the standard model in which a singlet fermionic particle, to serve as cold dark matter, and a singlet Higgs are added. We perform a reanalysis on the free parameters. In particular, demanding a correct relic abundance of dark matter, we derive and plot the coupling of the singlet fermion with the singlet Higgs, $g_s$, versus the dark matter mass. We analytically compute the pair annihilation cross section of singlet fermionic dark matter into two photons. The thermally averaged of this cross section is calculated for wide range of energies and plotted versus dark matter mass using $g_s$ consistent with the relic abundance condition. We also compare our results with the Fermi-Lat observations.
We point out the possibility to test the simplest scalar dark matter model at gamma-ray telescopes. We discuss the relevant constraints and show the predictions for direct detection, gamma line searches and LHC searches. Since the final state radiation processes are suppressed by small Yukawa couplings one could observe the gamma lines from dark matter annihilation.
One of the simplest viable models for dark matter is an additional neutral scalar, stabilised by a $mathbb{Z}_2$ symmetry. Using the GAMBIT package and combining results from four independent samplers, we present Bayesian and frequentist global fits of this model. We vary the singlet mass and coupling along with 13 nuisance parameters, including nuclear uncertainties relevant for direct detection, the local dark matter density, and selected quark masses and couplings. We include the dark matter relic density measured by Planck, direct searches with LUX, PandaX, SuperCDMS and XENON100, limits on invisible Higgs decays from the Large Hadron Collider, searches for high-energy neutrinos from dark matter annihilation in the Sun with IceCube, and searches for gamma rays from annihilation in dwarf galaxies with the Fermi-LAT. Viable solutions remain at couplings of order unity, for singlet masses between the Higgs mass and about 300 GeV, and at masses above $sim$1 TeV. Only in the latter case can the scalar singlet constitute all of dark matter. Frequentist analysis shows that the low-mass resonance region, where the singlet is about half the mass of the Higgs, can also account for all of dark matter, and remains viable. However, Bayesian considerations show this region to be rather fine-tuned.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا