Do you want to publish a course? Click here

Complementary Calibration: Boosting General Continual Learning with Collaborative Distillation and Self-Supervision

106   0   0.0 ( 0 )
 Added by Jin Li
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

General Continual Learning (GCL) aims at learning from non independent and identically distributed stream data without catastrophic forgetting of the old tasks that dont rely on task boundaries during both training and testing stages. We reveal that the relation and feature deviations are crucial problems for catastrophic forgetting, in which relation deviation refers to the deficiency of the relationship among all classes in knowledge distillation, and feature deviation refers to indiscriminative feature representations. To this end, we propose a Complementary Calibration (CoCa) framework by mining the complementary models outputs and features to alleviate the two deviations in the process of GCL. Specifically, we propose a new collaborative distillation approach for addressing the relation deviation. It distills models outputs by utilizing ensemble dark knowledge of new models outputs and reserved outputs, which maintains the performance of old tasks as well as balancing the relationship among all classes. Furthermore, we explore a collaborative self-supervision idea to leverage pretext tasks and supervised contrastive learning for addressing the feature deviation problem by learning complete and discriminative features for all classes. Extensive experiments on four popular datasets show that our CoCa framework achieves superior performance against state-of-the-art methods.



rate research

Read More

Knowledge distillation, which involves extracting the dark knowledge from a teacher network to guide the learning of a student network, has emerged as an important technique for model compression and transfer learning. Unlike previous works that exploit architecture-specific cues such as activation and attention for distillation, here we wish to explore a more general and model-agnostic approach for extracting richer dark knowledge from the pre-trained teacher model. We show that the seemingly different self-supervision task can serve as a simple yet powerful solution. For example, when performing contrastive learning between transformed entities, the noisy predictions of the teacher network reflect its intrinsic composition of semantic and pose information. By exploiting the similarity between those self-supervision signals as an auxiliary task, one can effectively transfer the hidden information from the teacher to the student. In this paper, we discuss practical ways to exploit those noisy self-supervision signals with selective transfer for distillation. We further show that self-supervision signals improve conventional distillation with substantial gains under few-shot and noisy-label scenarios. Given the richer knowledge mined from self-supervision, our knowledge distillation approach achieves state-of-the-art performance on standard benchmarks, i.e., CIFAR100 and ImageNet, under both similar-architecture and cross-architecture settings. The advantage is even more pronounced under the cross-architecture setting, where our method outperforms the state of the art CRD by an average of 2.3% in accuracy rate on CIFAR100 across six different teacher-student pairs.
Knowledge Distillation (KD) has been one of the most popu-lar methods to learn a compact model. However, it still suffers from highdemand in time and computational resources caused by sequential train-ing pipeline. Furthermore, the soft targets from deeper models do notoften serve as good cues for the shallower models due to the gap of com-patibility. In this work, we consider these two problems at the same time.Specifically, we propose that better soft targets with higher compatibil-ity can be generated by using a label generator to fuse the feature mapsfrom deeper stages in a top-down manner, and we can employ the meta-learning technique to optimize this label generator. Utilizing the softtargets learned from the intermediate feature maps of the model, we canachieve better self-boosting of the network in comparison with the state-of-the-art. The experiments are conducted on two standard classificationbenchmarks, namely CIFAR-100 and ILSVRC2012. We test various net-work architectures to show the generalizability of our MetaDistiller. Theexperiments results on two datasets strongly demonstrate the effective-ness of our method.
Knowledge distillation (KD) is an effective framework that aims to transfer meaningful information from a large teacher to a smaller student. Generally, KD often involves how to define and transfer knowledge. Previous KD methods often focus on mining various forms of knowledge, for example, feature maps and refined information. However, the knowledge is derived from the primary supervised task and thus is highly task-specific. Motivated by the recent success of self-supervised representation learning, we propose an auxiliary self-supervision augmented task to guide networks to learn more meaningful features. Therefore, we can derive soft self-supervision augmented distributions as richer dark knowledge from this task for KD. Unlike previous knowledge, this distribution encodes joint knowledge from supervised and self-supervised feature learning. Beyond knowledge exploration, another crucial aspect is how to learn and distill our proposed knowledge effectively. To fully take advantage of hierarchical feature maps, we propose to append several auxiliary branches at various hidden layers. Each auxiliary branch is guided to learn self-supervision augmented task and distill this distribution from teacher to student. Thus we call our KD method as Hierarchical Self-Supervision Augmented Knowledge Distillation (HSSAKD). Experiments on standard image classification show that both offline and online HSSAKD achieves state-of-the-art performance in the field of KD. Further transfer experiments on object detection further verify that HSSAKD can guide the network to learn better features, which can be attributed to learn and distill an auxiliary self-supervision augmented task effectively.
176 - Guile Wu , Shaogang Gong 2020
Traditional knowledge distillation uses a two-stage training strategy to transfer knowledge from a high-capacity teacher model to a compact student model, which relies heavily on the pre-trained teacher. Recent online knowledge distillation alleviates this limitation by collaborative learning, mutual learning and online ensembling, following a one-stage end-to-end training fashion. However, collaborative learning and mutual learning fail to construct an online high-capacity teacher, whilst online ensembling ignores the collaboration among branches and its logit summation impedes the further optimisation of the ensemble teacher. In this work, we propose a novel Peer Collaborative Learning method for online knowledge distillation, which integrates online ensembling and network collaboration into a unified framework. Specifically, given a target network, we construct a multi-branch network for training, in which each branch is called a peer. We perform random augmentation multiple times on the inputs to peers and assemble feature representations outputted from peers with an additional classifier as the peer ensemble teacher. This helps to transfer knowledge from a high-capacity teacher to peers, and in turn further optimises the ensemble teacher. Meanwhile, we employ the temporal mean model of each peer as the peer mean teacher to collaboratively transfer knowledge among peers, which helps each peer to learn richer knowledge and facilitates to optimise a more stable model with better generalisation. Extensive experiments on CIFAR-10, CIFAR-100 and ImageNet show that the proposed method significantly improves the generalisation of various backbone networks and outperforms the state-of-the-art methods.
Deep learning has achieved remarkable progress for visual recognition on large-scale balanced datasets but still performs poorly on real-world long-tailed data. Previous methods often adopt class re-balanced training strategies to effectively alleviate the imbalance issue, but might be a risk of over-fitting tail classes. The recent decoupling method overcomes over-fitting issues by using a multi-stage training scheme, yet, it is still incapable of capturing tail class information in the feature learning stage. In this paper, we show that soft label can serve as a powerful solution to incorporate label correlation into a multi-stage training scheme for long-tailed recognition. The intrinsic relation between classes embodied by soft labels turns out to be helpful for long-tailed recognition by transferring knowledge from head to tail classes. Specifically, we propose a conceptually simple yet particularly effective multi-stage training scheme, termed as Self Supervised to Distillation (SSD). This scheme is composed of two parts. First, we introduce a self-distillation framework for long-tailed recognition, which can mine the label relation automatically. Second, we present a new distillation label generation module guided by self-supervision. The distilled labels integrate information from both label and data domains that can model long-tailed distribution effectively. We conduct extensive experiments and our method achieves the state-of-the-art results on three long-tailed recognition benchmarks: ImageNet-LT, CIFAR100-LT and iNaturalist 2018. Our SSD outperforms the strong LWS baseline by from $2.7%$ to $4.5%$ on various datasets. The code is available at https://github.com/MCG-NJU/SSD-LT.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا