Do you want to publish a course? Click here

A categorical equivalence for Stonean residuated lattices

266   0   0.0 ( 0 )
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

Distributive Stonean residuated lattices are closely related to Stone algebras since their bounded lattice reduct is a Stone algebra. In the present work we follow the ideas presented by Chen and Gr{a}tzer and try to apply them for the case of Stonean residuated lattices. Given a Stonean residuated lattice, we consider the triple formed by its Boolean skeleton, its algebra of dense elements and a connecting map. We define a category whose objects are these triples and suitably defined morphisms, and prove that we have a categorical equivalence between this category and that of Stonean residuated lattices. We compare our results with other works and show some applications of the equivalence.



rate research

Read More

95 - F. Bou , F. Esteva , J. M. Font 2009
Let K be a variety of (commutative, integral) residuated lattices. The substructural logic usually associated with K is an algebraizable logic that has K as its equivalent algebraic semantics, and is a logic that preserves truth, i.e., 1 is the only truth value preserved by the inferences of the logic. In this paper we introduce another logic associated with K, namely the logic that preserves degrees of truth, in the sense that it preserves lower bounds of truth values in inferences. We study this second logic mainly from the point of view of abstract algebraic logic. We determine its algebraic models and we classify it in the Leibniz and the Frege hierarchies: we show that it is always fully selfextensional, that for most varieties K it is non-protoalgebraic, and that it is algebraizable if and only K is a variety of generalized Heyting algebras, in which case it coincides with the logic that preserves truth. We also characterize the new logic in three ways: by a Hilbert style axiomatic system, by a Gentzen style sequent calculus, and by a set of conditions on its closure operator. Concerning the relation between the two logics, we prove that the truth preserving logic is the purely inferential extension of the one that preserves degrees of truth with either the rule of Modus Ponens or the rule of Adjunction for the fusion connective.
It is proved that epimorphisms are surjective in a range of varieties of residuated structures, including all varieties of Heyting or Brouwerian algebras of finite depth, and all varieties consisting of Goedel algebras, relative Stone algebras, Sugihara monoids or positive Sugihara monoids. This establishes the infinite deductive Beth definability property for a corresponding range of substructural logics. On the other hand, it is shown that epimorphisms need not be surjective in a locally finite variety of Heyting or Brouwerian algebras of width 2. It follows that the infinite Beth property is strictly stronger than the so-called finite Beth property, confirming a conjecture of Blok and Hoogland.
In recent years philosophers of science have explored categorical equivalence as a promising criterion for when two (physical) theories are equivalent. On the one hand, philosophers have presented several examples of theories whose relationships seem to be clarified using these categorical methods. On the other hand, philosophers and logicians have studied the relationships, particularly in the first order case, between categorical equivalence and other notions of equivalence of theories, including definitional equivalence and generalized definitional (aka Morita) equivalence. In this article, I will express some skepticism about this approach, both on technical grounds and conceptual ones. I will argue that category structure (alone) likely does not capture the structure of a theory, and discuss some recent work in light of this claim.
We prove that the Karoubi envelope of a shift --- defined as the Karoubi envelope of the syntactic semigroup of the language of blocks of the shift --- is, up to natural equivalence of categories, an invariant of flow equivalence. More precisely, we show that the action of the Karoubi envelope on the Krieger cover of the shift is a flow invariant. An analogous result concerning the Fischer cover of a synchronizing shift is also obtained. From these main results, several flow equivalence invariants --- some new and some old --- are obtained. We also show that the Karoubi envelope is, in a natural sense, the best possible syntactic invariant of flow equivalence of sofic shifts. Another application concerns the classification of Markov-Dyck and Markov-Motzkin shifts: it is shown that, under mild conditions, two graphs define flow equivalent shifts if and only if they are isomorphic. Shifts with property (A) and their associated semigroups, introduced by Wolfgang Krieger, are interpreted in terms of the Karoubi envelope, yielding a proof of the flow invariance of the associated semigroups in the cases usually considered (a result recently announced by Krieger), and also a proof that property (A) is decidable for sofic shifts.
66 - Eric Sharpe 2019
In this article we review how categorical equivalences are realized by renormalization group flow in physical realizations of stacks, derived categories, and derived schemes. We begin by reviewing the physical realization of sigma models on stacks, as (universality classes of) gauged sigma models, and look in particular at properties of sigma models on gerbes (equivalently, sigma models with restrictions on nonperturbative sectors), and decomposition, in which two-dimensional sigma models on gerbes decompose into disjoint unions of ordinary theories. We also discuss stack structures on examples of moduli spaces of SCFTs, focusing on elliptic curves, and implications of subtleties there for string dualities in other dimensions. In the second part of this article, we review the physical realization of derived categories in terms of renormalization group flow (time evolution) of combinations of D-branes, antibranes, and tachyons. In the third part of this article, we review how Landau-Ginzburg models provide a physical realization of derived schemes, and also outline an example of a derived structure on a moduli spaces of SCFTs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا