Do you want to publish a course? Click here

Quantum Criticality in Resonant Andreev Conduction

54   0   0.0 ( 0 )
 Added by Bernard van Heck
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Motivated by recent experiments with proximitized nanowires, we study a mesoscopic s-wave superconductor connected via point contacts to normal-state leads. We demonstrate that at energies below the charging energy the system is described by the two-channel Kondo model, which can be brought to the quantum critical regime by varying the gate potential and conductances of the contacts.



rate research

Read More

In this article we review the state of the art on the transport properties of quantum dot systems connected to superconducting and normal electrodes. The review is mainly focused on the theoretical achievements although a summary of the most relevant experimental results is also given. A large part of the discussion is devoted to the single level Anderson type models generalized to include superconductivity in the leads, which already contains most of the interesting physical phenomena. Particular attention is paid to the competition between pairing and Kondo correlations, the emergence of pi-junction behavior, the interplay of Andreev and resonant tunneling, and the important role of Andreev bound states which characterized the spectral properties of most of these systems. We give technical details on the several different analytical and numerical methods which have been developed for describing these properties. We further discuss the recent theoretical efforts devoted to extend this analysis to more complex situations like multidot, multilevel or multiterminal configurations in which novel phenomena is expected to emerge. These include control of the localized spin states by a Josephson current and also the possibility of creating entangled electron pairs by means of non-local Andreev processes.
We propose a nanoscale device consisting of a double quantum dot with strong intra- and inter- dot Coulomb repulsions. In this design, the current can only flow through the lower dot, but is triggered by the gate-controlled occupancy of the upper dot. At low temperatures, our calculations predict the double dot to pass through a narrow Kondo regime, resulting in highly sensitive switching characteristics between three well-defined states : insulating, normal conduction and resonant conduction.
We provide a simple set of rules for predicting interference effects in off-resonant transport through single-molecule junctions. These effects fall in two classes, showing respectively an odd or an even number of nodes in the linear conductance within a given molecular charge state, and we demonstrate how to decide the interference class directly from the contacting geometry. For neutral alternant hydrocarbons, we employ the Coulson-Rushbrooke-McLachlan pairing theorem to show that the interference class is decided simply by tunneling on and off the molecule from same, or different sublattices. More generally, we investigate a range of smaller molecules by means of exact diag- onalization combined with a perturbative treatment of the molecule-lead tunnel coupling. While these results generally agree well with GW calculations, they are shown to be at odds with simpler mean-field treatments. For molecules with spin-degenerate ground states, we show that for most junctions, interference causes no transmission nodes, but argue that it may lead to a non-standard gate-dependence of the zero-bias Kondo resonance.
Interaction driven symmetry breaking in a metallic (doped) Dirac system can manifest in the spontaneous gap generation at the nodal point buried below the Fermi level. Across this transition linear conductivity remains finite making its direct observation difficult in linear transport. We propose the nonlinear Hall effect as a direct probe of this transition when inversion symmetry is broken. Specifically, for a two-dimensional Dirac material with a tilted low-energy dispersion, we first predict a transformation of the characteristic inter-band resonance peak into a non-Lorentzian form in the collisionless regime. Furthermore, we show that inversion-symmetry breaking quantum phase transition is controlled by an exotic tilt-dependent line of critical points. As this line is approached from the ordered side, the nonlinear Hall conductivity is suppressed owing to the scattering between the strongly coupled incoherent fermionic and bosonic excitations. Our results should motivate further studies of nonlinear responses in strongly interacting Dirac materials.
Quantum phase transitions are ubiquitous in many exotic behaviors of strongly-correlated materials. However the microscopic complexity impedes their quantitative understanding. Here, we observe thoroughly and comprehend the rich strongly-correlated physics in two profoundly dissimilar regimes of quantum criticality. With a circuit implementing a quantum simulator for the three-channel Kondo model, we reveal the universal scalings toward different low-temperature fixed points and along the multiple crossovers from quantum criticality. Notably, an unanticipated violation of the maximum conductance for ballistic free electrons is uncovered. The present charge pseudospin implementation of a Kondo impurity opens access to a broad variety of strongly-correlated phenomena.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا