Do you want to publish a course? Click here

The effect of atomic response time in the theory of Doppler cooling of trapped ions

75   0   0.0 ( 0 )
 Added by Andrew Steane
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe a simple approach to the problem of incorporating the response time of an atom or ion being Doppler-cooled into the theory of the cooling process. The system being cooled does not in general respond instantly to the changing laser frequencies it experiences in its rest frame, and this dynamic effect can affect significantly the temperatures attainable. It is particularly important for trapped ions when there is a slow decay out of the cooling cycle requiring the use of a repumping beam. We treat the cases of trapped ions with two and three internal states, then apply the theory to $^{40}{rm Ca}^+$. For this ion experimental data exist showing the ion to be cold under conditions for which heating is predicted if the dynamic effect is neglected. The present theory accounts for the observed behaviour.



rate research

Read More

185 - T. Secker , N. Ewald , J. Joger 2016
We theoretically study trapped ions that are immersed in an ultracold gas of Rydberg-dressed atoms. By off-resonant coupling on a dipole-forbidden transition, the adiabatic atom-ion potential can be made repulsive. We study the energy exchange between the atoms and a single trapped ion and find that Langevin collisions are inhibited in the ultracold regime for these repulsive interactions. Therefore, the proposed system avoids recently observed ion heating in hybrid atom-ion systems caused by coupling to the ions radio frequency trapping field and retains ultracold temperatures even in the presence of excess micromotion.
A mixed system of cooled and trapped, ions and atoms, paves the way for ion assisted cold chemistry and novel many body studies. Due to the different individual trapping mechanisms, trapped atoms are significantly colder than trapped ions, therefore in the combined system, the strong binary ion$-$atom interaction results in heat flow from ions to atoms. Conversely, trapped ions can also get collisionally heated by the cold atoms, making the resulting equilibrium between ions and atoms intriguing. Here we experimentally demonstrate, Rubidium ions (Rb$^+$) cool in contact with magneto-optically trapped (MOT) Rb atoms, contrary to the general expectation of ion heating for equal ion and atom masses. The cooling mechanism is explained theoretically and substantiated with numerical simulations. The importance of resonant charge exchange (RCx) collisions, which allows swap cooling of ions with atoms, wherein a single glancing collision event brings a fast ion to rest, is discussed.
104 - S. Ejtemaee , P. C. Haljan 2016
Using a laser polarization gradient, we realize 3D Sisyphus cooling of $^{171}$Yb$^+$ ions confined in and near the Lamb-Dicke regime in a linear Paul trap. The cooling rate and final mean motional energy of a single ion are characterized as a function of laser intensity and compared to semiclassical and quantum simulations. Sisyphus cooling is also applied to a linear string of four ions to obtain a mean energy of 1-3 quanta for all vibrational modes, an approximately order-of-magnitude reduction below Doppler cooled energies. This is used to enable subsequent, efficient sideband laser cooling.
We demonstrate the ability to load, cool and detect singly-charged calcium ions in a surface electrode trap using only visible and infrared lasers for the trapped-ion control. As opposed to the standard methods of cooling using dipole-allowed transitions, we combine power broadening of a quadrupole transition at 729 nm with quenching of the upper level using a dipole allowed transition at 854 nm. By observing the resulting 393 nm fluorescence we are able to perform background-free detection of the ion. We show that this system can be used to smoothly transition between the Doppler cooling and sideband cooling regimes, and verify theoretical predictions throughout this range. We achieve scattering rates which reliably allow recooling after collision events and allow ions to be loaded from a thermal atomic beam. This work is compatible with recent advances in optical waveguides, and thus opens a path in current technologies for large-scale quantum information processing. In situations where dielectric materials are placed close to trapped ions, it carries the additional advantage of using wavelengths which do not lead to significant charging, which should facilitate high rate optical interfaces between remotely held ions.
We implement three-dimensional polarization gradient cooling of trapped ions. Counter-propagating laser beams near $393,$nm impinge in lin$,perp,$lin configuration, at a frequency below the S$_{1/2}$ to P$_{3/2}$ resonance in $^{40}$Ca$^+$. We demonstrate mean phonon numbers of $5.4(4)$ at a trap frequency of $2pi times 285,$kHz and $3.3(4)$ at $2pitimes480,$kHz, in the axial and radial directions, respectively. Our measurements demonstrate that cooling with laser beams detuned to lower frequencies from the resonance is robust against an elevated phonon occupation number, and thus works well for an initial ion motion far out of the Lamb-Dicke regime, for up to four ions, and for a micromotion modulation index $betaleq 0.1$. Still, we find that the spectral impurity of the laser field influences both, cooling rates and cooling limits. Thus, a Fabry-P{e}rot cavity filter is employed for efficiently suppressing amplified spontaneous emission of the diode laser.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا