No Arabic abstract
Using a laser polarization gradient, we realize 3D Sisyphus cooling of $^{171}$Yb$^+$ ions confined in and near the Lamb-Dicke regime in a linear Paul trap. The cooling rate and final mean motional energy of a single ion are characterized as a function of laser intensity and compared to semiclassical and quantum simulations. Sisyphus cooling is also applied to a linear string of four ions to obtain a mean energy of 1-3 quanta for all vibrational modes, an approximately order-of-magnitude reduction below Doppler cooled energies. This is used to enable subsequent, efficient sideband laser cooling.
We implement three-dimensional polarization gradient cooling of trapped ions. Counter-propagating laser beams near $393,$nm impinge in lin$,perp,$lin configuration, at a frequency below the S$_{1/2}$ to P$_{3/2}$ resonance in $^{40}$Ca$^+$. We demonstrate mean phonon numbers of $5.4(4)$ at a trap frequency of $2pi times 285,$kHz and $3.3(4)$ at $2pitimes480,$kHz, in the axial and radial directions, respectively. Our measurements demonstrate that cooling with laser beams detuned to lower frequencies from the resonance is robust against an elevated phonon occupation number, and thus works well for an initial ion motion far out of the Lamb-Dicke regime, for up to four ions, and for a micromotion modulation index $betaleq 0.1$. Still, we find that the spectral impurity of the laser field influences both, cooling rates and cooling limits. Thus, a Fabry-P{e}rot cavity filter is employed for efficiently suppressing amplified spontaneous emission of the diode laser.
We extend the theory for laser cooling in a near-resonant optical lattice to include multiple excited hyperfine states. Simulations are performed treating the external degrees of freedom of the atom, i.e., position and momentum, classically, while the internal atomic states are treated quantum mechanically, allowing for arbitrary superpositions. Whereas theoretical treatments including only a single excited hyperfine state predict that the temperature should be a function of lattice depth only, except close to resonance, experiments have shown that the minimum temperature achieved depends also on the detuning from resonance of the lattice light. Our results resolve this discrepancy.
A mixed system of cooled and trapped, ions and atoms, paves the way for ion assisted cold chemistry and novel many body studies. Due to the different individual trapping mechanisms, trapped atoms are significantly colder than trapped ions, therefore in the combined system, the strong binary ion$-$atom interaction results in heat flow from ions to atoms. Conversely, trapped ions can also get collisionally heated by the cold atoms, making the resulting equilibrium between ions and atoms intriguing. Here we experimentally demonstrate, Rubidium ions (Rb$^+$) cool in contact with magneto-optically trapped (MOT) Rb atoms, contrary to the general expectation of ion heating for equal ion and atom masses. The cooling mechanism is explained theoretically and substantiated with numerical simulations. The importance of resonant charge exchange (RCx) collisions, which allows swap cooling of ions with atoms, wherein a single glancing collision event brings a fast ion to rest, is discussed.
We describe a simple approach to the problem of incorporating the response time of an atom or ion being Doppler-cooled into the theory of the cooling process. The system being cooled does not in general respond instantly to the changing laser frequencies it experiences in its rest frame, and this dynamic effect can affect significantly the temperatures attainable. It is particularly important for trapped ions when there is a slow decay out of the cooling cycle requiring the use of a repumping beam. We treat the cases of trapped ions with two and three internal states, then apply the theory to $^{40}{rm Ca}^+$. For this ion experimental data exist showing the ion to be cold under conditions for which heating is predicted if the dynamic effect is neglected. The present theory accounts for the observed behaviour.
We propose a laser cooling technique in which atoms are selectively excited to a dressed metastable state whose light shift and decay rate are spatially correlated for Sisyphus cooling. The case of cooling magnetically trapped (anti)hydrogen with the 1S-2S-3P transitions using pulsed ultra violet and continuous-wave visible lasers is numerically simulated. We find a number of appealing features including rapid 3-dimensional cooling from ~1 K to recoil-limited, millikelvin temperatures, as well as suppressed spin-flip loss and manageable photoionization loss.