Do you want to publish a course? Click here

Evolution of statistical analysis in empirical software engineering research: Current state and steps forward

323   0   0.0 ( 0 )
 Added by Richard Torkar
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Software engineering research is evolving and papers are increasingly based on empirical data from a multitude of sources, using statistical tests to determine if and to what degree empirical evidence supports their hypotheses. To investigate the practices and trends of statistical analysis in empirical software engineering (ESE), this paper presents a review of a large pool of papers from top-ranked software engineering journals. First, we manually reviewed 161 papers and in the second phase of our method, we conducted a more extensive semi-automatic classification of papers spanning the years 2001--2015 and 5,196 papers. Results from both review steps was used to: i) identify and analyze the predominant practices in ESE (e.g., using t-test or ANOVA), as well as relevant trends in usage of specific statistical methods (e.g., nonparametric tests and effect size measures) and, ii) develop a conceptual model for a statistical analysis workflow with suggestions on how to apply different statistical methods as well as guidelines to avoid pitfalls. Lastly, we confirm existing claims that current ESE practices lack a standard to report practical significance of results. We illustrate how practical significance can be discussed in terms of both the statistical analysis and in the practitioners context.



rate research

Read More

Statistics comes in two main flavors: frequentist and Bayesian. For historical and technical reasons, frequentist statistics have traditionally dominated empirical data analysis, and certainly remain prevalent in empirical software engineering. This situation is unfortunate because frequentist statistics suffer from a number of shortcomings---such as lack of flexibility and results that are unintuitive and hard to interpret---that curtail their effectiveness when dealing with the heterogeneous data that is increasingly available for empirical analysis of software engineering practice. In this paper, we pinpoint these shortcomings, and present Bayesian data analysis techniques that provide tangible benefits---as they can provide clearer results that are simultaneously robust and nuanced. After a short, high-level introduction to the basic tools of Bayesian statistics, we present the reanalysis of two empirical studies on the effectiveness of automatically generated tests and the performance of programming languages. By contrasting the original frequentist analyses with our new Bayesian analyses, we demonstrate the concrete advantages of the latter. To conclude we advocate a more prominent role for Bayesian statistical techniques in empirical software engineering research and practice.
Empirical Standards are natural-language models of a scientific communitys expectations for a specific kind of study (e.g. a questionnaire survey). The ACM SIGSOFT Paper and Peer Review Quality Initiative generated empirical standards for research methods commonly used in software engineering. These living documents, which should be continuously revised to reflect evolving consensus around research best practices, will improve research quality and make peer review more effective, reliable, transparent and fair.
Given the current transformative potential of research that sits at the intersection of Deep Learning (DL) and Software Engineering (SE), an NSF-sponsored community workshop was conducted in co-location with the 34th IEEE/ACM International Conference on Automated Software Engineering (ASE19) in San Diego, California. The goal of this workshop was to outline high priority areas for cross-cutting research. While a multitude of exciting directions for future work were identified, this report provides a general summary of the research areas representing the areas of highest priority which were discussed at the workshop. The intent of this report is to serve as a potential roadmap to guide future work that sits at the intersection of SE & DL.
Researchers are increasingly recognizing the importance of human aspects in software development and since qualitative methods are used to, in-depth, explore human behavior, we believe that studies using such techniques will become more common. Existing qualitative software engineering guidelines do not cover the full breadth of qualitative methods and knowledge on using them found in the social sciences. The aim of this study was thus to extend the software engineering research communitys current body of knowledge regarding available qualitative methods and provide recommendations and guidelines for their use. With the support of an epistemological argument and a literature review, we suggest that future research would benefit from (1) utilizing a broader set of research methods, (2) more strongly emphasizing reflexivity, and (3) employing qualitative guidelines and quality criteria. We present an overview of three qualitative methods commonly used in social sciences but rarely seen in software engineering research, namely interpretative phenomenological analysis, narrative analysis, and discourse analysis. Furthermore, we discuss the meaning of reflexivity in relation to the software engineering context and suggest means of fostering it. Our paper will help software engineering researchers better select and then guide the application of a broader set of qualitative research methods.
Representative sampling appears rare in empirical software engineering research. Not all studies need representative samples, but a general lack of representative sampling undermines a scientific field. This article therefore reports a systematic review of the state of sampling in recent, high-quality software engineering research. The key findings are: (1) random sampling is rare; (2) sophisticated sampling strategies are very rare; (3) sampling, representativeness and randomness often appear misunderstood. These findings suggest that textit{software engineering research has a generalizability crisis}. To address these problems, this paper synthesizes existing knowledge of sampling into a succinct primer and proposes extensive guidelines for improving the conduct, presentation and evaluation of sampling in software engineering research. It is further recommended that while researchers should strive for more representative samples, disparaging non-probability sampling is generally capricious and particularly misguided for predominately qualitative research.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا