Do you want to publish a course? Click here

Clues on High Energy Emission Mechanism from Blazar 3C 454.3 during 2015 August Flare

140   0   0.0 ( 0 )
 Added by Zahir Shah Mr.
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We perform a detailed spectral study of a recent flaring activity from the Flat Spectrum Radio Quasar (FSRQ), 3C,454.3, observed simultaneously in optical, UV, X-ray and $gamma$-ray energies during 16 to 28 August, 2015. The source reached its peak $gamma$-ray flux of $(1.9pm0.2)times,10^{-05} ; {rm ph,cm^{-2},s^{-1}}$ on 22 August. The time averaged broadband spectral energy distribution (SED) is obtained for three time periods, namely flaring state; covering the peak $gamma$-ray flux, post flaring state; immediately following the peak flare and quiescent state; separated from the flaring event and following the post flaring state. The SED corresponding to the flaring state is investigated using different emission models involving synchrotron, synchrotron self Compton (SSC) and external Compton (EC) mechanisms. Our study suggests that the X-ray and $gamma$-ray emission from 3C,454.3 cannot be attributed to a single emission mechanism and instead, one needs to consider both SSC and EC mechanisms. Moreover, the target photon energy responsible for the EC process corresponds to an equivalent temperature of 564 K, suggesting that the flare location lies beyond the broad line emitting region of the FSRQ. SED fitting of the other two flux states further supports these inferences.



rate research

Read More

The blazar 3C454.3 exhibited a strong flare seen in gamma-rays, X-rays, and optical/NIR bands during 3--12 December 2009. Emission in the V and J bands rose more gradually than did the gamma-rays and soft X-rays, though all peaked at nearly the same time. Optical polarization measurements showed dramatic changes during the flare, with a strong anti-correlation between optical flux and degree of polarization (which rose from ~ 3% to ~ 20%) during the declining phase of the flare. The flare was accompanied by large rapid swings in polarization angle of ~ 170 degree. This combination of behaviors appear to be unique. We have cm-band radio data during the same period but they show no correlation with variations at higher frequencies. Such peculiar behavior may be explained using jet models incorporating fully relativistic effects with a dominant source region moving along a helical path or by a shock-in-jet model incorporating three-dimensional radiation transfer if there is a dominant helical magnetic field. We find that spectral energy distributions at different times during the flare can be fit using modified one-zone models where only the magnetic field strength and particle break frequencies and normalizations need change. An optical spectrum taken at nearly the same time provides an estimate for the central black hole mass of ~ 2.3 * 10^9 M_sun. We also consider two weaker flares seen during the $sim 200$ d span over which multi-band data are available. In one of them, the V and J bands appear to lead the $gamma$-ray and X-ray bands by a few days; in the other, all variations are simultaneous.
115 - G. Ghisellini 2007
In July 2007, the blazar 3C 454.3 underwent a flare in the optical, reaching R~13 on July 19. Then the optical flux decreased by one magnitude, being R~14 when the source was detected by the gamma-ray satellite AGILE, that observed the source on July 24-30. At the same time, the Swift satellite performed a series of snapshots. We can construct the simultaneous spectral energy distribution using optical, UV, X-ray and gamma-ray data. These shows that an increased gamma-ray flux is accompanied by a weaker optical/X-ray flux with respect to the flare observed in the Spring 2005 by INTEGRAL and Swift. This confirms earlier suggestions about the behaviour of the jet of 3C 454.3.
The gamma-ray-detected blazar 3C 454.3 exhibits dramatic flux and polarization variations in the optical and near-infrared bands. In December 2010, the object emitted a very bright outburst. We monitored it for approximately four years (including the 2010 outburst) by optical and near-infrared photopolarimetry. During the 2010 outburst, the object emitted two rapid, redder brightenings, at which the polarization degrees (PDs) in both bands increased significantly and the bands exhibited a frequency-dependent polarization. The observed frequency-dependent polarization leads us to propose that the polarization vector is composed of two vectors. Therefore, we separate the observed polarization vectors into short and long-term components that we attribute to the emissions of the rapid brightenings and the outburst that varied the timescale of days and months, respectively. The estimated PD of the short-term component is greater than the maximum observed PD and is close to the theoretical maximum PD. We constrain the bulk Lorentz factors and inclination angles between the jet axis and the line of sight from the estimated PDs. In this case, the inclination angle of the emitting region of short-term component from the first rapid brightening should be equal to 90$^{circ}$, because the estimated PD of the short-term component was approximately equal to the theoretical maximum PD. Thus, the Doppler factor at the emitting region of the first rapid brightening should be equal to the bulk Lorentz factor.
We present the gamma-ray data of the extraordinary flaring activity above 100 MeV from the flat spectrum radio quasar 3C 454.3 detected by AGILE during the month of December 2009. 3C 454.3, that has been among the most active blazars of the FSRQ type since 2007, was detected in the gamma-ray range with a progressively rising flux since November 10, 2009. The gamma-ray flux reached a value comparable with that of the Vela pulsar on December 2, 2009. Remarkably, between December 2 and 3, 2009 the source more than doubled its gamma-ray emission and became the brightest gamma-ray source in the sky with a peak flux of F_{gamma,p} = (2000 pm 400) x 10^-8 ph cm^-2 s^-1 for a 1-day integration above 100 MeV. The gamma-ray intensity decreased in the following days with the source flux remaining at large values near F simeq (1000 pm 200) x 10^-8 ph cm^-2 s^-1 for more than a week. This exceptional gamma-ray flare dissipated among the largest ever detected intrinsic radiated power in gamma-rays above 100 MeV (L_{gamma, source, peak} simeq 3 x 10^46 erg s^-1, for a relativistic Doppler factor of {delta} simeq 30). The total isotropic irradiated energy of the month-long episode in the range 100 MeV - 3 GeV is E_{gamma,iso} simeq 10^56 erg. We report the intensity and spectral evolution of the gamma-ray emission across the flaring episode. We briefly discuss the important theoretical implications of our detection.
We present a multi-wavelength temporal analysis of the blazar 3C 454.3 during the high $gamma$-ray active period from May-December, 2014. Except for X-rays, the period is well sampled at near-infrared (NIR)-optical by the emph{SMARTS} facility and the source is detected continuously on daily timescale in the emph{Fermi}-LAT $gamma$-ray band. The source exhibits diverse levels of variability with many flaring/active states in the continuously sampled $gamma$-ray light curve which are also reflected in the NIR-optical light curves and the sparsely sampled X-ray light curve by the emph{Swift}-XRT. Multi-band correlation analysis of this continuous segment during different activity periods shows a change of state from no lags between IR and $gamma$-ray, optical and $gamma$-ray, and IR and optical to a state where $gamma$-ray lags the IR/optical by $sim$3 days. The results are consistent with the previous studies of the same during various $gamma$-ray flaring and active episodes of the source. This consistency, in turn, suggests an extended localized emission region with almost similar conditions during various $gamma$-ray activity states. On the other hand, the delay of $gamma$-ray with respect to IR/optical and a trend similar to IR/optical in X-rays along with strong broadband correlations favor magnetic field related origin with X-ray and $gamma$-ray being inverse Comptonized of IR/optical photons and external radiation field, respectively.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا