Do you want to publish a course? Click here

The extraordinary gamma-ray flare of the blazar 3C 454.3

129   0   0.0 ( 0 )
 Added by Edoardo Striani
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the gamma-ray data of the extraordinary flaring activity above 100 MeV from the flat spectrum radio quasar 3C 454.3 detected by AGILE during the month of December 2009. 3C 454.3, that has been among the most active blazars of the FSRQ type since 2007, was detected in the gamma-ray range with a progressively rising flux since November 10, 2009. The gamma-ray flux reached a value comparable with that of the Vela pulsar on December 2, 2009. Remarkably, between December 2 and 3, 2009 the source more than doubled its gamma-ray emission and became the brightest gamma-ray source in the sky with a peak flux of F_{gamma,p} = (2000 pm 400) x 10^-8 ph cm^-2 s^-1 for a 1-day integration above 100 MeV. The gamma-ray intensity decreased in the following days with the source flux remaining at large values near F simeq (1000 pm 200) x 10^-8 ph cm^-2 s^-1 for more than a week. This exceptional gamma-ray flare dissipated among the largest ever detected intrinsic radiated power in gamma-rays above 100 MeV (L_{gamma, source, peak} simeq 3 x 10^46 erg s^-1, for a relativistic Doppler factor of {delta} simeq 30). The total isotropic irradiated energy of the month-long episode in the range 100 MeV - 3 GeV is E_{gamma,iso} simeq 10^56 erg. We report the intensity and spectral evolution of the gamma-ray emission across the flaring episode. We briefly discuss the important theoretical implications of our detection.



rate research

Read More

Recent detection of suborbital gamma-ray variability of Flat Spectrum Radio Quasar (FSRQ) 3C 279 by Fermi Large Area Telescope (LAT) is in severe conflict with established models of blazar emission. This paper presents the results of suborbital analysis of the Fermi/LAT data for the brightest gamma-ray flare of another FSRQ blazar 3C 454.3 in November 2010 (MJD 55516-22). Gamma-ray light curves are calculated for characteristic time bin lengths as short as 3 min. The measured variations of the 0.1-10 GeV photon flux are tested against the hypothesis of steady intraorbit flux. In addition, the structure function is calculated for absolute photon flux differences and for their significances. Significant gamma-ray flux variations are measured only over time scales longer than ~5h, which is consistent with the standard blazar models.
During the month of December, 2009 the blazar 3C 454.3 became the brightest gamma-ray source in the sky, reaching a peak flux F ~2000E-8 ph/cm2/s for E > 100 MeV. Starting in November, 2009 intensive multifrequency campaigns monitored the 3C 454 gamma-ray outburst. Here we report the results of a 2-month campaign involving AGILE, INTEGRAL, Swift/XRT, Swift/BAT, RossiXTE for the high-energy observations, and Swift/UVOT, KANATA, GRT, REM for the near-IR/optical/UV data. The GASP/WEBT provided radio and additional optical data. We detected a long-term active emission phase lasting ~1 month at all wavelengths: in the gamma-ray band, peak emission was reached on December 2-3, 2009. Remarkably, this gamma-ray super-flare was not accompanied by correspondingly intense emission in the optical/UV band that reached a level substantially lower than the previous observations in 2007-2008. The lack of strong simultaneous optical brightening during the super-flare and the determination of the broad-band spectral evolution severely constrain the theoretical modelling. We find that the pre- and post-flare broad-band behavior can be explained by a one-zone model involving SSC plus external Compton emission from an accretion disk and a broad-line region. However, the spectra of the Dec. 2-3, 2009 super-flare and of the secondary peak emission on Dec. 9, 2009 cannot be satisfactorily modelled by a simple one-zone model. An additional particle component is most likely active during these states.
131 - S. Vercellone 2012
3C 454.3 is the most variable and intense extragalactic gamma-ray blazar detected by AGILE and Fermi during the last 4 years. This remarkable source shows extreme flux variability (about a fact or of 20) on a time-scale of 24-48 hours, as well as repeated flares on a time-scale of more than a year. The dynamic range, from the quiescence up to the most intense gamma-ray super-flare, is of about two orders of magnitude. We present the gamma-ray properties of 3C 454.3, comparing both the characteristics of flares at different levels and their multi-wavelength behavior. Moreover, an interpretation of both the long- and short-term properties of 3C 454.3 is reviewed, with particular emphasis on the two gamma-ray super-flares observed in 2009 and 2010, when 3C 454.3 became the brightest source of the whole gamma-ray sky.
127 - S. Vercellone 2008
We report the first blazar detection by the AGILE satellite. AGILE detected 3C 454.3 during a period of strongly enhanced optical emission in July 2007. AGILE observed the source with a dedicated repointing during the period 2007 July 24-30 with its two co-aligned imagers, the Gamma-Ray Imaging Detector and the hard X-ray imager Super-AGILE sensitive in the 30 MeV-50 GeV and 18-60 keV, respectively. Over the entire period, AGILE detected gamma-ray emission from 3C 454.3 at a significance level of 13.8-$sigma$ with an average flux (E$>$100 MeV) of $(280 pm 40) times 10^{-8}$ photons cm$^{-2}$ s$^{-1}$. The gamma-ray flux appears to be variable towards the end of the observation. No emission was detected by Super-AGILE in the energy range 20-60 keV, with a 3-$sigma$ upper limit of $2.3 times 10^{-3}$ photons cm$^{-2}$ s$^{-1}$. The gamma-ray flux level of 3C 454.3 detected by AGILE is the highest ever detected for this quasar and among the most intense gamma-ray fluxes ever detected from Flat Spectrum Radio Quasars.
316 - E. Benitez 2009
We performed an optical spectroscopic monitoring of the blazar 3C 454.3 from September 2003 to July 2008. Sixteen optical spectra were obtained during different runs, which constitute the first spectroscopic monitoring done in the rest-frame UV region (z=0.859). An overall flux variation of the MgII (2800 A) by a factor ~ 3 was observed, while the corresponding UV continuum (F_cont at 3000 A) changed by a factor ~ 14. The MgII emission lines respond proportionally to the continuum variations when the source is in a low-activity state. In contrast, near the optical outbursts detected in 2005 and 2007, the MgII emission lines showed little response to the continuum flux variations. During the monitored period the UV FeII flux changed by a factor ~ 6 and correlated with F_cont (r = 0.92). A negative correlation between EW(Mg II) and F_cont was found, i.e. the so-called Intrinsic Baldwin Effect.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا