Do you want to publish a course? Click here

Extremely high polarization in 2010 outburst of blazar 3C 454.3

251   0   0.0 ( 0 )
 Added by Mahito Sasada Dr.
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The gamma-ray-detected blazar 3C 454.3 exhibits dramatic flux and polarization variations in the optical and near-infrared bands. In December 2010, the object emitted a very bright outburst. We monitored it for approximately four years (including the 2010 outburst) by optical and near-infrared photopolarimetry. During the 2010 outburst, the object emitted two rapid, redder brightenings, at which the polarization degrees (PDs) in both bands increased significantly and the bands exhibited a frequency-dependent polarization. The observed frequency-dependent polarization leads us to propose that the polarization vector is composed of two vectors. Therefore, we separate the observed polarization vectors into short and long-term components that we attribute to the emissions of the rapid brightenings and the outburst that varied the timescale of days and months, respectively. The estimated PD of the short-term component is greater than the maximum observed PD and is close to the theoretical maximum PD. We constrain the bulk Lorentz factors and inclination angles between the jet axis and the line of sight from the estimated PDs. In this case, the inclination angle of the emitting region of short-term component from the first rapid brightening should be equal to 90$^{circ}$, because the estimated PD of the short-term component was approximately equal to the theoretical maximum PD. Thus, the Doppler factor at the emitting region of the first rapid brightening should be equal to the bulk Lorentz factor.



rate research

Read More

Context. 3C 454.3 is a very active flat spectrum radio quasar (blazar) that has undergone a recent outburst in all observed bands, including the optical. Aims. In this work we explore the short-term optical variability of 3C 454.3 during its outburst by searching for time delays between different optical bands. Finding one would be important for understanding the evolution of the spectrum of the relativistic electrons, which generate the synchrotron jet emission. Methods. We performed photometric monitoring of the object by repeating exposures in different optical bands (BVRI). Occasionally, different telescopes were used to monitor the object in the same band to verify the reliability of the smallest variations we observed. Results. Except on one occasion, where we found indications of a lag of the blue wavelengths behind the red ones, the results are inconclusive for most of the other cases. There were either no structures in the light curves to be able to search for patterns, or else different approaches led to different conclusions.
We present multiwavelength data of the blazar 3C 454.3 obtained during an extremely bright outburst from November 2010 through January 2011. These include flux density measurements with the Herschel Space Observatory at five submillimeter-wave and far-infrared bands, the Fermi Large Area Telescope at gamma-ray energies, Swift at X-ray, ultraviolet (UV), and optical frequencies, and the Submillimeter Array at 1.3 mm. From this dataset, we form a series of 52 spectral energy distributions (SEDs) spanning nearly two months that are unprecedented in time coverage and breadth of frequency. Discrete correlation anlaysis of the millimeter, far-infrared, and gamma-ray light curves show that the variations were essentially simultaneous, indicative of co-spatiality of the emission, at these wavebands. In contrast, differences in short-term fluctuations at various wavelengths imply the presence of inhomegeneities in physical conditions across the source. We locate the site of the outburst in the parsec-scale core, whose flux density as measured on 7 mm Very Long Baseline Array images increased by 70 percent during the first five weeks of the outburst. Based on these considerations and guided by the SEDs, we propose a model in which turbulent plasma crosses a conical standing shock in the parsec-scale region of the jet. Here, the high-energy emission in the model is produced by inverse Compton scattering of seed photons supplied by either nonthermal radiation from a Mach disk, thermal emission from hot dust, or (for X-rays) synchrotron radiation from plasma that crosses the standing shock. For the two dates on which we fitted the model SED to the data, the model corresponds very well to the observations at all bands except at X-ray energies, where the spectrum is flatter than observed.
We report on optical-near-infrared photopolarimetric observations of a blazar 3C 454.3 over 200 d. The object experienced an optical outburst in July 2007. This outburst was followed by a short state fainter than $V=15.2$ mag lasting $sim 25$ d. The object, then, entered an active state during which we observed short flares having a timescale of 3-10 d. The object showed two types of features in the color-magnitude relationship. One is a bluer-when-brighter trend in the outburst state, and the other is a redder-when-brighter trend in the faint state. These two types of features suggest a contribution of a thermal emission to the observed flux, as suspected in previous studies. Our polarimetric observation detected two episodes of the rotation of the polarization vector. The first one was a counterclockwise rotation in the $QU$ plane during the outburst state. After this rotation event of the polarization vector, the object entered a rapidly fading stage. The second one was seen in a series of flares during the active state. Each flare had a specific position angle of polarization, and it apparently rotated clockwise from the first to the last flares. Thus, the object exhibited rotations of the polarization vector in opposite directions. We estimated a decay timescale of the short flares during the active state, and then calculated an upper limit of the strength of the magnetic field, $B$=0.2 G, assuming a typical beaming factor of blazars, $delta=20$. This upper limit of $B$ is smaller than those previously estimated from spectral analysis.
Opacity-driven shifts of the apparent VLBI core position with frequency (the core shift effect) probe physical conditions in the innermost parts of jets in active galactic nuclei. We present the first detailed investigation of this effect in the brightest gamma-ray blazar 3C454.3 using direct measurements from simultaneous 4.6-43 GHz VLBA observations, and a time lag analysis of 4.8-37 GHz lightcurves from the UMRAO, CrAO, and Metsahovi observations in 2007-2009. The results support the standard Konigl model of jet physics in the VLBI core region. The distance of the core from the jet origin r_c(nu), the core size W(nu), and the lightcurve time lag DT(nu) all depend on the observing frequency nu as r_c(nu)~W(nu)~ DT(nu)~nu^-1/k. The obtained range of k=0.6-0.8 is consistent with the synchrotron self-absorption being the dominating opacity mechanism in the jet. The similar frequency dependence of r_c(nu) and W(nu) suggests that the external pressure gradient does not dictate the jet geometry in the cm-band core region. Assuming equipartition, the magnetic field strength scales with distance r as B = 0.4(r/1pc)^-0.8 G. The total kinetic power of electron/positron jet is about 10^44 ergs/s.
Characterisation of the long-term variations in the broad line region in a luminous blazar, where Comptonisation of broad-line emission within a relativistic jet is the standard scenario for production of gamma-ray emission that dominates the spectral energy distribution. We analysed ten years of optical spectroscopic data from the Steward Observatory for the blazar 3C 454.3, as well as gamma-ray data from the Fermi Large Area Telescope (LAT). The optical spectra are dominated by a highly variable non-thermal synchrotron continuum with a prominent Mg II broad emission line. The line flux was obtained by spectral decomposition including significant contribution from the Fe II pseudo-continuum. Three methods were used to characterise variations in the line flux: (1) stacking of the continuum-subtracted spectra, (2) subtracting the running mean light curves calculated for different timescales, and (3) evaluating potential time delays via the discrete correlation function (DCF). Despite very large variations in the gamma-ray and optical continua, the line flux changes only moderately (< 0.1 dex). The data suggest that the line flux responds to a dramatic change in the blazar activity from a very high state in 2010 to a deep low state in 2012. Two interpretations are possible: either the line flux is anti-correlated with the continuum or the increase in the line luminosity is delayed by ~600 days. If this time delay results from the reverberation of poorly constrained accretion disc emission in both the broad-line region (BLR) and the synchrotron emitting blazar zone within a relativistic jet, we would obtain natural estimates for the BLR radius [R_{BLR,MgII} >~ 0.28 pc] and for the supermassive black hole mass [M_SMBH ~ 8.5x10^8 M_sun]. We did not identify additional examples of short-term flares of the line flux, in addition to the previously reported case observed in 2010.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا