No Arabic abstract
A new mechanism for reactivity of multiply twinned gold nanoparticles resulting from their inherently strained structure provides a further explanation of the surprising catalytic activity of small gold nanoparticles. Atomic defect structural studies of surface strains and quantitative analysis of atomic column displacements in the decahedral structure observed by aberration corrected transmission electron microscopy reveal an average expansion of surface nearest neighbor distances of 5.6 percent, with many strained by more than 10 percent. Density functional theory calculations of the resulting modified gold d-band states predict significantly enhanced activity for carbon monoxide oxidation. The new insights have important implications for the applications of nanoparticles in chemical process technology, including for heterogeneous catalysis.
The influence of morphology on the optical properties of silver nanoparticles is studied. A general relationship between the surface plasmon resonances and the morphology of each nanoparticle is established. The optical response is investigated for cubes and decahedrons with different truncations. We found that polyhedral nanoparticles composed with less faces show more surface plasmon resonances than spherical-like ones. It is also observed that the vertices of the nanoparticles play an important role in the optical response, because the sharpener they become, the greater the number of resonances. For all the nanoparticles, a main resonance with a dipolar character was identified as well as other secondary resonances of less intensity. It is also found that as the nanoparticle becomes more symmetric, the main resonance is always blue shifted.
Photothermal conversion (PTC) nanostructures have great potential for applications in many fields, and therefore, they have attracted tremendous attention. However, the construction of a PTC nanoreactor with multi-compartment structure to achieve the combination of unique chemical properties and structural feature is still challenging due to the synthetic difficulties. Herein, we designed and synthesized a catalytically active, PTC gold (Au)@polydopamine (PDA) nanoreactor driven by infrared irradiation using assembled PS-b-P2VP nanosphere as soft template. The particles exhibit multi-compartment structure which is revealed by 3D electron tomography characterization technique. They feature permeable shells with tunable shell thickness. Full kinetics for the reduction reaction of 4-nitrophenol has been investigated using these particles as nanoreactors and compared with other reported systems. Notably, a remarkable acceleration of the catalytic reaction upon near-infrared irradiation is demonstrated, which reveals for the first time the importance of the synergistic effect of photothermal conversion and complex inner structure to the kinetics of the catalytic reduction. The ease of synthesis and fresh insights into catalysis will promote a new platform for novel nanoreactor studies.
The performance of gold nanoparticles (NPs) in applications depends critically on the structure of the NP-solvent interface, at which the electrostatic surface polarization is one of the key characteristics that affects hydration, ionic adsorption, and electrochemical reactions. Here, we demonstrate significant effects of explicit metal polarizability on the solvation and electrostatic properties of bare gold NPs in aqueous electrolyte solutions of sodium salts of various anions (Cl$^-$, BF$_4$$^-$, PF$_6$$^-$, Nip$^-$(nitrophenolate), and 3- and 4-valent hexacyanoferrate (HCF)), using classical molecular dynamics simulations with a polarizable core-shell model of the gold atoms. We find considerable spatial heterogeneity of the polarization and electrostatic potentials on the NP surface, mediated by a highly facet-dependent structuring of the interfacial water molecules. Moreover, ion-specific, facet-dependent ion adsorption leads to large alterations of the interfacial polarization. Compared to non-polarizable NPs, polarizability modifies water local dipole densities only slightly, but has substantial effects on the electrostatic surface potentials, and leads to significant lateral redistributions of ions on the NP surface. Besides, interfacial polarization effects on the individual monovalent ions cancel out in the far field, and effective Debye-Huckel surface potentials remain essentially unaffected, as anticipated from continuum `image-charge concepts. Hence, the explicit charge response of metal NPs is crucial for the accurate description and interpretation of interfacial electrostatics (as, e.g., for charge transfer and interface polarization in catalysis and electrochemistry).
High-entropy alloys (HEAs) are solid solutions of multiple elements with equal atomic ratios which present an innovative pathway for de novo alloy engineering. While there exist extensive studies to ascertain the important structural aspects governing their mechanical behaviors, elucidating the underlying deformation mechanisms still remains a challenge. Using atomistic simulations, we probe the particle rearrangements in a yielding, model HEA system to understand the structural origin of its plasticity. We find the plastic deformation is initiated by irreversible topological fluctuations which tend to spatially localize in regions termed as soft spots which consist of particles actively participating in slow vibrational motions, an observation strikingly reminiscent of nonlinear glassy rheology. Due to the varying local elastic moduli resulting from the loss of compositional periodicity, these plastic responses exhibit significant spatial heterogeneity and are found to be inversely correlated with the distribution of local electronegativity. Further mechanical loading promotes the cooperativity among these local plastic events and triggers the formation of dislocation loops. As in strained crystalline solids, different dislocation loops can further merge together and propagate as the main carrier of large-scale plastic deformation. However, the energy barriers located at the spatial regions with higher local electronegativity severely hinders the motion of dislocations. By delineating the transient mechanical response in terms of atomic configuration, our computational findings shed new light on understanding the nature of plasticity of single-phase HEA.
We study the solvation and electrostatic properties of bare gold (Au) nanoparticles (NPs) of $1$-$2$ nm in size in aqueous electrolyte solutions of sodium salts of various anions with large physicochemical diversity (Cl$^-$, BF$_4$$^-$, PF$_6$$^-$, Nip$^-$(nitrophenolate), 3- and 4-valent hexacyanoferrate (HCF)) using nonpolarizable, classical molecular dynamics computer simulations. We find a substantial facet selectivity in the adsorption structure and spatial distribution of the ions at the Au-NPs: while sodium and some of the anions (e.g., Cl$^-$, HCF$^{3-}$) adsorb more at the `edgy (100) and (110) facets of the NPs, where the water hydration structure is more disordered, other ions (e.g., BF$_4$$^-$, PF$_6$$^-$, Nip$^-$) prefer to adsorb strongly on the extended and rather flat (111) facets. In particular, Nip$^-$, which features an aromatic ring in its chemical structure, adsorbs strongly and perturbs the first water monolayer structure on the NP (111) facets substantially. Moreover, we calculate adsorptions, radially-resolved electrostatic potentials, as well as the far-field effective electrostatic surface charges and potentials by mapping the long-range decay of the calculated electrostatic potential distribution onto the standard Debye-Huckel form. We show how the extrapolation of these values to other ionic strengths can be performed by an analytical Adsorption-Grahame relation between effective surface charge and potential. We find for all salts negative effective surface potentials in the range from $-10$ mV for NaCl down to about $-80$ mV for NaNip, consistent with typical experimental ranges for the zeta-potential. We discuss how these values depend on the surface definition and compare them to the explicitly calculated electrostatic potentials near the NP surface, which are highly oscillatory in the $pm 0.5$ V range.