Do you want to publish a course? Click here

Enhanced Catalytic Activity of Gold@Polydopamine Nanoreactors with Multi-compartment Structure Under NIR Irradiation

120   0   0.0 ( 0 )
 Added by Shilin Mei
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Photothermal conversion (PTC) nanostructures have great potential for applications in many fields, and therefore, they have attracted tremendous attention. However, the construction of a PTC nanoreactor with multi-compartment structure to achieve the combination of unique chemical properties and structural feature is still challenging due to the synthetic difficulties. Herein, we designed and synthesized a catalytically active, PTC gold (Au)@polydopamine (PDA) nanoreactor driven by infrared irradiation using assembled PS-b-P2VP nanosphere as soft template. The particles exhibit multi-compartment structure which is revealed by 3D electron tomography characterization technique. They feature permeable shells with tunable shell thickness. Full kinetics for the reduction reaction of 4-nitrophenol has been investigated using these particles as nanoreactors and compared with other reported systems. Notably, a remarkable acceleration of the catalytic reaction upon near-infrared irradiation is demonstrated, which reveals for the first time the importance of the synergistic effect of photothermal conversion and complex inner structure to the kinetics of the catalytic reduction. The ease of synthesis and fresh insights into catalysis will promote a new platform for novel nanoreactor studies.

rate research

Read More

A new mechanism for reactivity of multiply twinned gold nanoparticles resulting from their inherently strained structure provides a further explanation of the surprising catalytic activity of small gold nanoparticles. Atomic defect structural studies of surface strains and quantitative analysis of atomic column displacements in the decahedral structure observed by aberration corrected transmission electron microscopy reveal an average expansion of surface nearest neighbor distances of 5.6 percent, with many strained by more than 10 percent. Density functional theory calculations of the resulting modified gold d-band states predict significantly enhanced activity for carbon monoxide oxidation. The new insights have important implications for the applications of nanoparticles in chemical process technology, including for heterogeneous catalysis.
Two-dimensional (2D) boron monolayers have been successfully synthesized on silver substrate very recently. Their potential application is thus of great significance. In this work, we explore the possibility of boron monolayers (BMs) as electrocatalysts for hydrogen evolution reaction (HER) by first-principle method. Our calculations show that the BMs are active catalysts for HER with nearly zero free energy of hydrogen adsorption, metallic conductivity and plenty of active sites in the basal plane. The effect of the substrate on the HER activity is further assessed. It is found that the substrate has a positive effect on the HER performance caused by the competitive effect of mismatch strain and charge transfer. The indepth understanding of the structure dependent HER activity is also provided.
Previous studies indicate that the properties of graphene oxide (GO) can be significantly improved by enhancing its graphitic domain size through thermal diffusion and clustering of functional groups. Remarkably, this transition takes place below the decomposition temperature of the functional groups and thus allows fine-tuning of graphitic domains without compromising with the functionality of GO. By studying the transformation of GO under mild thermal treatment, we directly observe this size enhancement of graphitic domains from originally 40 nm2 to 200 nm2 through an extensive transmission electron microscopy (TEM) study. Additionally, we confirm the integrity of the functional groups during this process by comprehensive chemical analysis. A closer look into the process confirms the theoretically predicted relevance for the room temperature stability of GO. We further investigate the influence of enlarged graphitic domains on the hydration behaviour of GO and catalytic performance of single-atom catalysts supported by GO.
The heating effect of terahertz pulse with various frequencies and intensities on the heavy water solution is investigated using the molecular dynamics simulation. Resonant absorptions are found for both heavy water and light water, but at a different resonant frequency which is about 16 THz for heavy water and 21 THz for light water. This resonant phenomenon can be explained perfectly by the collective rotational modes that may release water molecules from hydrogen bonding. The findings not only illustrate the heating mechanism of heavy water solution under the terahertz pulse irradiation, but also demonstrate a novel difference between light water and heavy water that could have potential applications.
The ability to efficiently evolve hydrogen via electrocatalysis at low overpotentials holds tremendous promise for clean energy. Hydrogen evolution reaction (HER) can be easily achieved from water if a voltage above the thermodynamic potential of the HER is applied. Large overpotentials are energetically inefficient but can be lowered with expensive platinum based catalysts. Replacement of Pt with inexpensive, earth abundant electrocatalysts would be significantly beneficial for clean and efficient hydrogen evolution. Towards this end, promising HER characteristics have been reported using 2H (trigonal prismatic) XS2 (where X = Mo or W) nanoparticles with a high concentration of metallic edges as electrocatalysts. The key challenges for HER with XS2 are increasing the number and catalytic activity of active sites. Here we report atomically thin nanosheets of chemically exfoliated WS2 as efficient catalysts for hydrogen evolution with very low overpotentials. Atomic-resolution transmission electron microscopy and spectroscopy analyses indicate that enhanced electrocatalytic activity of WS2 is associated with high concentration of strained metallic 1T (octahedral) phase in the as-exfoliated nanosheets. Density functional theory calculations reveal that the presence of strain in the 1T phase leads to an enhancement of the density of states at the Fermi level and increases the catalytic activity of the WS2 nanosheet. Our results suggest that chemically exfoliated WS2 nanosheets could be interesting catalysts for hydrogen evolution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا