Do you want to publish a course? Click here

Gauge invariant one-loop corrections to Higgs boson couplings in non-minimal Higgs models

99   0   0.0 ( 0 )
 Added by Kei Yagyu
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We comprehensively evaluate renormalized Higgs boson couplings at one-loop level in non-minimal Higgs models such as the Higgs Singlet Model (HSM) and the four types of Two Higgs Doublet Models (THDMs) with a softly-broken $Z_2$ symmetry. The renormalization calculation is performed in the on-shell scheme improved by using the pinch technique to eliminate the gauge dependence in the renormalized couplings. We first review the pinch technique for scalar boson two-point functions in the Standard Model (SM), the HSM and the THDMs. We then discuss the difference in the results of the renormalized Higgs boson couplings between the improved on-shell scheme and the ordinal one with a gauge dependence appearing in mixing parameters of scalar bosons. Finally, we widely investigate how we can identify the HSM and the THDMs focusing on the pattern of deviations in the renormalized Higgs boson couplings from predictions in the SM.



rate research

Read More

We describe a numerical calculation tool H-COUP written in Fortran, which provides one-loop electroweak corrected vertices for the discovered Higgs boson $h(125)$ in various Higgs sectors. The renormalization is based on the improved on-shell scheme without gauge dependence. In the first version H-COUP_1.0, the following models are included, namely, the Higgs singlet model, four types (Type-I, Type-II, Type-X, Type-Y) of two Higgs doublet models with a softly-broken $Z_2$ symmetry and the inert doublet model. We first briefly introduce these models and then explain how to install and run this tool in an individual machine. A sample of numerical outputs is provided for user information.
We calculate 1-loop radiative corrections to the $hZZ$ and $hWW$ couplings in models with next--to--simplest Higgs sectors satisfying the electroweak $rho$ parameter equal to 1 at tree level: the Higgs singlet model, the two-Higgs doublet models, and the Georgi-Machacek model. Under theoretical and current experimental constraints, the three models have different correlations between the deviations in the $hZZ$ and $hWW$ couplings from the standard model predictions. In particular, we find for each model predictions with no overlap with the other two models.
In this paper we present the complete two-loop vertex corrections to scalar and pseudo-scalar Higgs boson production for general colour factors for the gauge group ${rm SU(N)}$ in the limit where the top quark mass gets infinite. We derive a general formula for the vertex correction which holds for conserved and non conserved operators. For the conserved operator we take the electromagnetic vertex correction as an example whereas for the non conserved operators we take the two vertex corrections above. Our observations for the structure of the pole terms $1/epsilon^4$, $1/epsilon^3$ and $1/epsilon^2$ in two loop order are the same as made earlier in the literature for electromagnetism. However we also elucidate the origin of the second order single pole term which is equal to the second order singular part of the anomalous dimension plus a universal function which is the same for the quark and the gluon. [3mm]
We investigate predictions on the triple Higgs boson couplings with radiative corrections in the model with an additional real singlet scalar field. In this model, the second physical scalar state ($H$) appears in addition to the Higgs boson ($h$) with the mass 125 GeV. The $hhh$ vertex is calculated at the one-loop level, and its possible deviation from the predictions in the standard model is evaluated under various theoretical constraints. The decay rate of $H to hh$ is also computed at the one-loop level. We also take into account the bound from the precise measurement of the $W$ boson mass, which gives the upper limit on the mixing angle $alpha$ between two physical Higgs bosons for a given value of the mass of $H$ ($m_H^{}$). We find that the deviation in the $hhh$ coupling from the prediction in the standard model can maximally be about 250%, 150% and 75% for $m_H^{}=300$, 500 and 1000 GeV, respectively, under the requirement that the cutoff scale of the model is higher than 3 TeV. We also discuss deviations from the standard model prediction in double Higgs boson production from the gluon fusion at the LHC using the one-loop corrected Higgs boson vertices.
We compute the dominant two-loop corrections to the Higgs trilinear coupling $lambda_{hhh}$ and to the Higgs quartic coupling $lambda_{hhhh}$ in models with extended Higgs sectors, using the effective-potential approximation. We provide in this paper all necessary details about our calculations, and present general $overline{text{MS}}$ expressions for derivatives of the integrals appearing in the effective potential at two loops. We also consider three particular Beyond-the-Standard-Model (BSM) scenarios -- namely a typical scenario of an Inert Doublet Model (IDM), and scenarios of a Two-Higgs-Doublet Model (2HDM) and of a Higgs Singlet Model (HSM) without scalar mixing -- and we include all the necessary finite counterterms to obtain (in addition to $overline{text{MS}}$ results) on-shell scheme expressions for the corrections to the Higgs self-couplings. With these analytic results, we investigate the possible magnitude of two-loop BSM contributions to the Higgs self-couplings and the fate of the non-decoupling effects that are known to appear at one loop. We find that, at least as long as pertubative unitarity conditions are fulfilled, the size of two-loop corrections remains well below that of one-loop corrections. Typically, two-loop contributions to $lambda_{hhh}$ amount to approximately 20% of those at one loop, implying that the non-decoupling effects observed at one loop are not significantly modified, but also meaning that higher-order corrections need to be taken into account for the future perspective of precise measurements of the Higgs trilinear coupling.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا