Do you want to publish a course? Click here

H-COUP: a program for one-loop corrected Higgs boson couplings in non-minimal Higgs sectors

110   0   0.0 ( 0 )
 Added by Kei Yagyu
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We describe a numerical calculation tool H-COUP written in Fortran, which provides one-loop electroweak corrected vertices for the discovered Higgs boson $h(125)$ in various Higgs sectors. The renormalization is based on the improved on-shell scheme without gauge dependence. In the first version H-COUP_1.0, the following models are included, namely, the Higgs singlet model, four types (Type-I, Type-II, Type-X, Type-Y) of two Higgs doublet models with a softly-broken $Z_2$ symmetry and the inert doublet model. We first briefly introduce these models and then explain how to install and run this tool in an individual machine. A sample of numerical outputs is provided for user information.

rate research

Read More

We present the concept of H-COUP_ver 2, which evaluates the decay rates (including higher order corrections) for the Higgs boson with a mass of 125 GeV in various extended Higgs models. In the previous version (H-COUP_1.0), only a full set of the Higgs boson vertices are evaluated at one-loop level in a gauge invariant manner in these models. H-COUP_ver 2 contains all the functions of H-COUP_1.0. After shortly introducing these extended Higgs models and discussing their theoretical and experimental constraints, we summarize formulae for the renormalized vertices and the decay rates. We then explain how to install and run H-COUP_ver 2 with some numerical examples.
We comprehensively evaluate renormalized Higgs boson couplings at one-loop level in non-minimal Higgs models such as the Higgs Singlet Model (HSM) and the four types of Two Higgs Doublet Models (THDMs) with a softly-broken $Z_2$ symmetry. The renormalization calculation is performed in the on-shell scheme improved by using the pinch technique to eliminate the gauge dependence in the renormalized couplings. We first review the pinch technique for scalar boson two-point functions in the Standard Model (SM), the HSM and the THDMs. We then discuss the difference in the results of the renormalized Higgs boson couplings between the improved on-shell scheme and the ordinal one with a gauge dependence appearing in mixing parameters of scalar bosons. Finally, we widely investigate how we can identify the HSM and the THDMs focusing on the pattern of deviations in the renormalized Higgs boson couplings from predictions in the SM.
Higgs sector extensions beyond the Standard Model (BSM) provide additional sources of CP violation and further scalar states that help to trigger a strong first order electroweak phase transition (SFOEWPT) required to generate the observed baryon asymmetry of the Universe through electroweak baryogenesis. We investigate the CP-violating 2-Higgs-Doublet Model (C2HDM) and the Next-to-Minimal 2-Higgs-Doublet Model (N2HDM) with respect to their potential to generate an SFOEWPT while being compatible with all relevant and recent theoretical and experimental constraints. The implications of an SFOEWPT on the collider phenomenology of the two models are analysed in detail in particular with respect to Higgs pair production. We provide benchmark points for parameter points that are compatible with an SFOEWPT and provide distinct di-Higgs signatures.
We compute the dominant two-loop corrections to the Higgs trilinear coupling $lambda_{hhh}$ and to the Higgs quartic coupling $lambda_{hhhh}$ in models with extended Higgs sectors, using the effective-potential approximation. We provide in this paper all necessary details about our calculations, and present general $overline{text{MS}}$ expressions for derivatives of the integrals appearing in the effective potential at two loops. We also consider three particular Beyond-the-Standard-Model (BSM) scenarios -- namely a typical scenario of an Inert Doublet Model (IDM), and scenarios of a Two-Higgs-Doublet Model (2HDM) and of a Higgs Singlet Model (HSM) without scalar mixing -- and we include all the necessary finite counterterms to obtain (in addition to $overline{text{MS}}$ results) on-shell scheme expressions for the corrections to the Higgs self-couplings. With these analytic results, we investigate the possible magnitude of two-loop BSM contributions to the Higgs self-couplings and the fate of the non-decoupling effects that are known to appear at one loop. We find that, at least as long as pertubative unitarity conditions are fulfilled, the size of two-loop corrections remains well below that of one-loop corrections. Typically, two-loop contributions to $lambda_{hhh}$ amount to approximately 20% of those at one loop, implying that the non-decoupling effects observed at one loop are not significantly modified, but also meaning that higher-order corrections need to be taken into account for the future perspective of precise measurements of the Higgs trilinear coupling.
238 - Howard E. Haber 1997
The Higgs sector of the Minimal Supersymmetric Model (MSSM) is a CP-conserving two-Higgs doublet model that depends, at tree-level, on two Higgs sector parameters. In order to accurately determine the phenomenological implications of this model, one must include the effects of radiative corrections. The leading contributions to the one-loop radiative corrections are exhibited; large logarithms are resummed by the renormalization group method. Implications for Higgs phenomenology are briefly discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا