No Arabic abstract
Materials exhibiting large magnetoresistance may not only be of fundamental research interest, but also can lead to wide-ranging applications in magnetic sensors and switches. Here we demonstrate a large linear-in-field magnetoresistance, $Delta rho/rho$ reaching as high as $sim$600$%$ at 2 K under a 9 Tesla field, in the tetragonal phase of a transiton-metal stannide $beta$-RhSn$_4$. Detailed analyses show that its magnetic responses are overall inconsistent with the classical model based on the multiple electron scattering by mobility fluctuations in an inhomogenous conductor, but rather in line with the quantum effects due to the presence of Dirac-like dispersions in the electronic structure. Our results may help guiding the future quest for quantum magnetoresistive materials into the family of stannides, similar to the role played by PtSn$_4$ with topological node arcs.
The paper has been withdrawn for some reasons
We report here the magneto-transport properties of the newly synthesized Heusler compound Cr2NiGa which crystallizes in a disordered cubic B2 structure belonging to Pm-3m space group. The sample is found to be paramagnetic down to 2 K with metallic character. On application of magnetic field, a significantly large increase in resistivity is observed which corresponds to magnetoresistance as high as 112% at 150 kOe of field at the lowest temperature. Most remarkably, the sample shows negative temperature coefficient of resistivity below about 50 K under the application of field gretare than or equal to 80 kOe, signifying a field-induced metal to `insulating transition. The observed magnetoresistance follows Kohlers rule below 20 K indicating the validity of the semiclassical model of electronic transport in metal with a single relaxation time. A multi-band model for electronic transport, originally proposed for semimetals, is found to be appropriate to describe the magneto-transport behavior of the sample.
The band structure of high carrier density metal CrP features an interesting crossing at the Y point of the Brillouin zone. The crossing, which is protected by the nonsymmorphic symmetry of the space group, results in a hybrid, semi-Dirac-like energy-momentum dispersion relation near Y. The linear energy-momentum dispersion relation along Y-$Gamma$ is reminiscent of the observed band structure in several semimetallic extremely large magnetoresistance (XMR) materials. We have measured the transverse magnetoresistance of CrP up to 14 T at temperatures as low as $sim$ 16 mK. Our data reveal a nonsaturating, quadratic magnetoresistance as well as the behaviour of the so-called `turn-on temperature in the temperature dependence of resistivity. Despite the difference in the magnitude of the magnetoresistance and the fact that CrP is not a semimetal, these features are qualitatively similar to the observations reported for XMR materials. Thus, the high-field electrical transport studies of CrP offer the prospect of identifying the possible origin of the nonsaturating, quadratic magnetoresistance observed in a wide range of metals.
Negative magnetoresistance (NMR) induced by the Adler-Bell-Jackiw anomaly is regarded as the most prominent quantum signature of Weyl semimetals when electrical field $E$ is collinear with the external magnetic field $B$. In this article, we report universal NMR in nonmagnetic, centrosymmetric transition metal dipnictides MPn$_{2}$ (M=Nb and Ta; Pn=As and Sb), in which the existence of Weyl fermions can be explicitly excluded. Using temperature-dependent magnetoresistance, Hall and thermoelectric coefficients of Nernst and Seebeck effects, we determine that the emergence of the NMR phenomena in MPn$_{2}$ is coincident with a Lifshitz transition, corresponding to the formation of unique electron-hole-electron ($e$-$h$-$e$) pockets along the $I-L-I$ direction. First-principles calculations reveal that, along the $I-L-I$ line, the $d_{xy}$ and $d_{x^{2}-y^{2}}$ orbitals of the transition metal form tilted nodal rings of band crossing well below the Fermi level. Strong spin-orbital coupling gaps all the crossing points and creates the characteristic $e$-$h$-$e$ structure, making MPn$_{2}$ a topological semimetal with $mathbb{Z}_2$ indices of [0;(111)]. By excluding the weak localization contribution of the bulk states, we conclude that the universal NMR in MPn$_{2}$ may have an exotic origin in topological surface states, which appears in pairs with opposite spin-momentum locking on nontrivial surfaces.
We present measurements of the optical spectra on single crystals of spinel-type compound cis. This material undergoes a sharp metal-insulator transition at 230 K. Upon entering the insulating state, the optical conductivity shows an abrupt spectral weight transfer and an optical excitation gap opens. In the metallic phase, Drude components in low frequencies and an interband transition peak at $sim 2 eV$ are observed. In the insulating phase, a new peak emerges around $0.5 eV$. This peak is attributed to the transition of electrons from the occupied Ir$^{3+}$ $t_{2g}$ state to upper Ir$^{4+}$ $t_{2g}$ subband resulting from the dimerization of Ir$^{4+}$ ions in association with the simultaneous formations of Ir$^{3+}$ and Ir$^{4+}$ octamers as recently revealed by the x-ray diffraction experiment. Our experiments indicate that the band structure is reconstructed in the insulating phase due to the sudden structural transition.